Acta Metallurgica Sinica (English Letters) ›› 2017, Vol. 30 ›› Issue (6): 528-540.DOI: 10.1007/s40195-017-0572-9
• Orginal Article • Previous Articles Next Articles
Bismarck Luiz Silva1, Rodrigo Valenzuela Reyes2, Amauri Garcia3, Jose′ Eduardo Spinelli2
Received:2017-03-20
Revised:2017-03-20
Online:2017-06-30
Published:2017-08-25
Bismarck Luiz Silva, Rodrigo Valenzuela Reyes, Amauri Garcia, Jose′ Eduardo Spinelli. Dendritic Growth, Eutectic Features and Their Effects on Hardness of a Ternary Sn-Zn-Cu Solder Alloy[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(6): 528-540.
Add to citation manager EndNote|Ris|BibTeX
| Position from the metal/mold interface (mm) | t1(s) | t2(s) | t3(s) | Average time of passage of liquidus isotherm (s) | Standard deviation (%) |
|---|---|---|---|---|---|
| 4.5 | 6 | 6 | 6 | 6.0 | 0.0 |
| 9.5 | 13 | 14 | 13 | 13.3 | 0.4 |
| 14.5 | 24 | 26 | 25 | 25.0 | 0.7 |
| 18.5 | 36 | 37 | 37 | 36.7 | 0.4 |
| 30.0 | 61 | 63 | 62 | 62.0 | 0.7 |
| 43.0 | 112 | 116 | 114 | 114.0 | 1.3 |
| 58.0 | 166 | 173 | 169 | 169.3 | 2.4 |
| Average deviation | 0.9 |
Table 1 Results associated with the time (t) of passage of the liquidus isotherm by distinct thermocouples positioned along the length of the DS casting for three identical directional solidification experiments
| Position from the metal/mold interface (mm) | t1(s) | t2(s) | t3(s) | Average time of passage of liquidus isotherm (s) | Standard deviation (%) |
|---|---|---|---|---|---|
| 4.5 | 6 | 6 | 6 | 6.0 | 0.0 |
| 9.5 | 13 | 14 | 13 | 13.3 | 0.4 |
| 14.5 | 24 | 26 | 25 | 25.0 | 0.7 |
| 18.5 | 36 | 37 | 37 | 36.7 | 0.4 |
| 30.0 | 61 | 63 | 62 | 62.0 | 0.7 |
| 43.0 | 112 | 116 | 114 | 114.0 | 1.3 |
| 58.0 | 166 | 173 | 169 | 169.3 | 2.4 |
| Average deviation | 0.9 |
Fig. 2 Schematic representation of a, c transverse, b longitudinal sections with methods used to measure dendritic and interphase spacings: intercept method for λ, λ2 and λ3 and triangle method for λ1
Fig. 3 a Experimental time-temperature curve allowing transformation temperatures to be determined; b experimental thermal profiles obtained along the length of the Sn-9 wt%Zn-2 wt%Cu alloy DS casting
Fig. 4 Experimental profiles obtained for the Sn-Zn-Cu alloy corresponding to a position versus time taken by the liquidus front to reach each thermocouple; b growth rate, c cooling rate as a function of position
Fig. 5 Macrostructure of the ternary Sn-9 wt%Zn-2 wt%Cu alloy DS casting with indications of three relative positions at 5, 20 and 70 mm from the cooled surface of the casting and their corresponding transverse and longitudinal microstructures
Fig. 6 a Primary/tertiary dendritic arm spacing as a function of cooling rate (T˙T˙), b secondary dendritic spacing as a function of growth rate (v) for the Sn-Zn-Cu alloy. R2 is the coefficient of determination
Fig. 8 SEM images of transverse sections detailing the morphological evolution of α-Zn eutectic phase surrounded by the Sn-rich dendritic matrix in the Sn-9 wt%Zn-2 wt%Cu alloy. P is the position from the metal/mold interface The resulting eutectic microstructure of the Sn-9 wt% Zn-2 wt%Cu alloy, close to the bottom of the casting, is formed by a mixture of globular-like Zn particles embedded in a Sn-rich matrix, as can be observed in Fig. 8. However, at positions farther away from the cooled surface of the casting, needle-like particles of the α-Zn phase start to prevail. Regions within the DS casting associated with v > 0.5 show prevalence of globules, while the needle-like α-Zn phase particles are restricted to v < 0.3 mm/s. These limits regarding the different eutectic morphologies of the Sn-Zn-Cu alloy apply also to the binary Sn-9 wt%Zn alloy, as reported by Garcia et al. [14].
Fig. 10 Elemental SEM-EDS mappings obtained along the transverse specimen at the positions P = 10 mm, P = 20 mm and P = 70 mm from the metal/mold interface of the vertically solidified Sn-9 wt%Zn-2 wt%Cu alloy casting
Fig. 12 Evolution of Vickers hardness as a function of the inverse of the square root of the interphase spacing for the Sn-9 wt%Zn-2 wt%Cu solder alloy
|
| [1] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
| [2] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
| [3] | Zongye Ding, Naifang Zhang, Liao Yu, Wenquan Lu, Jianguo Li, Qiaodan Hu. Recent Progress in Metallurgical Bonding Mechanisms at the Liquid/Solid Interface of Dissimilar Metals Investigated via in situ X-ray Imaging Technologies [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 145-168. |
| [4] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
| [5] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
| [6] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
| [7] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
| [8] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
| [9] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
| [10] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
| [11] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
| [12] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
| [13] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
| [14] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
| [15] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
