Acta Metallurgica Sinica (English Letters) ›› 2017, Vol. 30 ›› Issue (6): 528-540.DOI: 10.1007/s40195-017-0572-9
• Orginal Article • Previous Articles Next Articles
Bismarck Luiz Silva1, Rodrigo Valenzuela Reyes2, Amauri Garcia3, Jose′ Eduardo Spinelli2
Received:
2017-03-20
Revised:
2017-03-20
Online:
2017-06-30
Published:
2017-08-25
Bismarck Luiz Silva, Rodrigo Valenzuela Reyes, Amauri Garcia, Jose′ Eduardo Spinelli. Dendritic Growth, Eutectic Features and Their Effects on Hardness of a Ternary Sn-Zn-Cu Solder Alloy[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(6): 528-540.
Add to citation manager EndNote|Ris|BibTeX
Position from the metal/mold interface (mm) | t1(s) | t2(s) | t3(s) | Average time of passage of liquidus isotherm (s) | Standard deviation (%) |
---|---|---|---|---|---|
4.5 | 6 | 6 | 6 | 6.0 | 0.0 |
9.5 | 13 | 14 | 13 | 13.3 | 0.4 |
14.5 | 24 | 26 | 25 | 25.0 | 0.7 |
18.5 | 36 | 37 | 37 | 36.7 | 0.4 |
30.0 | 61 | 63 | 62 | 62.0 | 0.7 |
43.0 | 112 | 116 | 114 | 114.0 | 1.3 |
58.0 | 166 | 173 | 169 | 169.3 | 2.4 |
Average deviation | 0.9 |
Table 1 Results associated with the time (t) of passage of the liquidus isotherm by distinct thermocouples positioned along the length of the DS casting for three identical directional solidification experiments
Position from the metal/mold interface (mm) | t1(s) | t2(s) | t3(s) | Average time of passage of liquidus isotherm (s) | Standard deviation (%) |
---|---|---|---|---|---|
4.5 | 6 | 6 | 6 | 6.0 | 0.0 |
9.5 | 13 | 14 | 13 | 13.3 | 0.4 |
14.5 | 24 | 26 | 25 | 25.0 | 0.7 |
18.5 | 36 | 37 | 37 | 36.7 | 0.4 |
30.0 | 61 | 63 | 62 | 62.0 | 0.7 |
43.0 | 112 | 116 | 114 | 114.0 | 1.3 |
58.0 | 166 | 173 | 169 | 169.3 | 2.4 |
Average deviation | 0.9 |
Fig. 2 Schematic representation of a, c transverse, b longitudinal sections with methods used to measure dendritic and interphase spacings: intercept method for λ, λ2 and λ3 and triangle method for λ1
Fig. 3 a Experimental time-temperature curve allowing transformation temperatures to be determined; b experimental thermal profiles obtained along the length of the Sn-9 wt%Zn-2 wt%Cu alloy DS casting
Fig. 4 Experimental profiles obtained for the Sn-Zn-Cu alloy corresponding to a position versus time taken by the liquidus front to reach each thermocouple; b growth rate, c cooling rate as a function of position
Fig. 5 Macrostructure of the ternary Sn-9 wt%Zn-2 wt%Cu alloy DS casting with indications of three relative positions at 5, 20 and 70 mm from the cooled surface of the casting and their corresponding transverse and longitudinal microstructures
Fig. 6 a Primary/tertiary dendritic arm spacing as a function of cooling rate (T˙T˙), b secondary dendritic spacing as a function of growth rate (v) for the Sn-Zn-Cu alloy. R2 is the coefficient of determination
Fig. 8 SEM images of transverse sections detailing the morphological evolution of α-Zn eutectic phase surrounded by the Sn-rich dendritic matrix in the Sn-9 wt%Zn-2 wt%Cu alloy. P is the position from the metal/mold interface The resulting eutectic microstructure of the Sn-9 wt% Zn-2 wt%Cu alloy, close to the bottom of the casting, is formed by a mixture of globular-like Zn particles embedded in a Sn-rich matrix, as can be observed in Fig. 8. However, at positions farther away from the cooled surface of the casting, needle-like particles of the α-Zn phase start to prevail. Regions within the DS casting associated with v > 0.5 show prevalence of globules, while the needle-like α-Zn phase particles are restricted to v < 0.3 mm/s. These limits regarding the different eutectic morphologies of the Sn-Zn-Cu alloy apply also to the binary Sn-9 wt%Zn alloy, as reported by Garcia et al. [14].
Fig. 10 Elemental SEM-EDS mappings obtained along the transverse specimen at the positions P = 10 mm, P = 20 mm and P = 70 mm from the metal/mold interface of the vertically solidified Sn-9 wt%Zn-2 wt%Cu alloy casting
Fig. 12 Evolution of Vickers hardness as a function of the inverse of the square root of the interphase spacing for the Sn-9 wt%Zn-2 wt%Cu solder alloy
|
[1] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[2] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[3] | Zongye Ding, Naifang Zhang, Liao Yu, Wenquan Lu, Jianguo Li, Qiaodan Hu. Recent Progress in Metallurgical Bonding Mechanisms at the Liquid/Solid Interface of Dissimilar Metals Investigated via in situ X-ray Imaging Technologies [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 145-168. |
[4] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[5] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[6] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[7] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[8] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[9] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[10] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[11] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[12] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[13] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[14] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[15] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||