Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (1): 32-38.DOI: 10.1007/s40195-014-0162-z
• Orginal Article • Previous Articles Next Articles
Jun-Young Park, Yong-Sik Ahn()
Received:
2014-04-23
Revised:
2014-05-30
Online:
2015-01-10
Published:
2015-07-23
Jun-Young Park, Yong-Sik Ahn. Effect of Ni and Mn on the Mechanical Properties of 22Cr Micro-duplex Stainless Steel[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1): 32-38.
Add to citation manager EndNote|Ris|BibTeX
Alloy No. | Specimen | Mn | Ni | N | Cr | C | Mo | Si | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|---|
1 | 4Mn-2Ni | 4.07 | 1.97 | 0.19 | 21.51 | 0.032 | 0.302 | 0.99 | 0.8 | Bal. |
2 | 5Mn-1.5Ni | 5.03 | 1.5 | 0.201 | 21.47 | 0.031 | 0.307 | 1.01 | 0.81 | Bal. |
3 | 6Mn-1Ni | 5.94 | 1.03 | 0.204 | 21.5 | 0.028 | 0.3 | 1 | 0.8 | Bal. |
4 | 7Mn-0.5Ni | 7 | 0.493 | 0.209 | 21.58 | 0.027 | 0.308 | 0.99 | 0.8 | Bal. |
5 | 8Mn | 7.81 | 0 | 0.209 | 21.3 | 0.026 | 0.297 | 0.98 | 0.79 | Bal. |
Table 1 Chemical compositions of the duplex stainless steels
Alloy No. | Specimen | Mn | Ni | N | Cr | C | Mo | Si | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|---|
1 | 4Mn-2Ni | 4.07 | 1.97 | 0.19 | 21.51 | 0.032 | 0.302 | 0.99 | 0.8 | Bal. |
2 | 5Mn-1.5Ni | 5.03 | 1.5 | 0.201 | 21.47 | 0.031 | 0.307 | 1.01 | 0.81 | Bal. |
3 | 6Mn-1Ni | 5.94 | 1.03 | 0.204 | 21.5 | 0.028 | 0.3 | 1 | 0.8 | Bal. |
4 | 7Mn-0.5Ni | 7 | 0.493 | 0.209 | 21.58 | 0.027 | 0.308 | 0.99 | 0.8 | Bal. |
5 | 8Mn | 7.81 | 0 | 0.209 | 21.3 | 0.026 | 0.297 | 0.98 | 0.79 | Bal. |
Alloy No. | Strain at inflection ε 0 (%) | Yield point (MPa) | Fracture strain ε f (%) | |||
---|---|---|---|---|---|---|
-30°C | -50°C | -30°C | -50°C | -30°C | -50°C | |
1 | 21.5 | 17.4 | 519.8 | 611.5 | 32.7 | 39.8 |
2 | 28.7 | 20.6 | 618.1 | 643.0 | 58.0 | 56.1 |
3 | 29.8 | 22.6 | 586.6 | 710.9 | 54.9 | 49.6 |
4 | 35.6 | 26.2 | 619.8 | 621.2 | 51.8 | 54.9 |
5 | 29.9 | 22.2 | 609.8 | 749.0 | 49.9 | 47.9 |
Table 2 Inflection point of the tensile stress-strain curves at -30 and -50°C
Alloy No. | Strain at inflection ε 0 (%) | Yield point (MPa) | Fracture strain ε f (%) | |||
---|---|---|---|---|---|---|
-30°C | -50°C | -30°C | -50°C | -30°C | -50°C | |
1 | 21.5 | 17.4 | 519.8 | 611.5 | 32.7 | 39.8 |
2 | 28.7 | 20.6 | 618.1 | 643.0 | 58.0 | 56.1 |
3 | 29.8 | 22.6 | 586.6 | 710.9 | 54.9 | 49.6 |
4 | 35.6 | 26.2 | 619.8 | 621.2 | 51.8 | 54.9 |
5 | 29.9 | 22.2 | 609.8 | 749.0 | 49.9 | 47.9 |
Alloy No. | M d30 | Volume fraction of SIM f SIM (%) | |
---|---|---|---|
-30°C | -50°C | ||
1 | -50.6 | 87.1 ± 0.6 | 86.8 ± 1.1 |
2 | -58.3 | 78.9 ± 1.5 | 88.7 ± 0.6 |
3 | -61.4 | 55.2 ± 1.1 | 78.2 ± 0.5 |
4 | -67.9 | 37.2 ± 2.9 | 65.6 ± 1.5 |
5 | -60.2 | 40.6 ± 1.7 | 65.0 ± 2.4 |
Table 3 Calculated M d30 values and martensite phase ratios
Alloy No. | M d30 | Volume fraction of SIM f SIM (%) | |
---|---|---|---|
-30°C | -50°C | ||
1 | -50.6 | 87.1 ± 0.6 | 86.8 ± 1.1 |
2 | -58.3 | 78.9 ± 1.5 | 88.7 ± 0.6 |
3 | -61.4 | 55.2 ± 1.1 | 78.2 ± 0.5 |
4 | -67.9 | 37.2 ± 2.9 | 65.6 ± 1.5 |
5 | -60.2 | 40.6 ± 1.7 | 65.0 ± 2.4 |
Fig. 8 TEM images of 8Mn steel after tensile testing at -50°C showing: a ferrite, b austenite containing martensite, c the austenite/ferrite-boundary region
[1] | P.P. Johansson, M. Liljas, Proceedings of 4th European Stainless Steel Science and Market Congress, Association Technique de la Siderurgie Francaise(ATS), Paris , (2002), p. 1-26 |
[2] | I. Toor, J.H. Park, H.S. Kwon,Corros. Sci. 50, 404(2008) |
[3] | R. Merello, F.J. Botana, J. Botella, M.V. Matres, M. Marcos,Corros. Sci. 45, 909(2003) |
[4] | S.M. Wessman, S. Hertzman, R. Pettersson, R. Lagneborg, M. Liljas,Mater. Sci. Technol. 24, 348(2008) |
[5] | C. Herrera, D. Ponge, D. Raabe,Acta Mater. 59, 4653(2011) |
[6] | M. Liljas, P. Johansson, H.P. Liu, C.O.A.Olsson, Steel Res. Int. 79, 466(2008) |
[7] | E.M. Westin, B. Brolund, S. Hertzman,Steel Res. Int. 79, 473(2008) |
[8] | R.C. Newman, T. Shahrabi,Corros. Sci. 27, 827(1987) |
[9] | A. Belfrouh, C. Masson, D. Vouagner, A.M. Debecdelievre, N.S. Prakash, J.P. Audouard,Corros. Sci. 38, 1639(1996) |
[10] | G. Lothongkum, P. Wongpanya, S. Morito, T. Furuhara, T. Maki,Corros. Sci. 48, 137(2006) |
[11] | C.M. Tseng, H.Y. Liou, W.T. Tsai, Mater. Sci.Eng.A 344, 190 (2003) |
[12] | A.S. Vanini, J.P. Audouard, P. Marcus,Corros. Sci. 36, 1825(1994) |
[13] | D. Raabe, Mater. Sci.Eng.A 197, 31 (1995) |
[14] | D. Raabe,Mater. Sci. Technol. 11, 455(1995) |
[15] | F. Lecroisey, A. Pineau, Metall. Trans.A 3, 387 (1972) |
[16] | A. Rosen, R. Jago, T. Kjer, J. Mater. Sci. 7, 870(1972) |
[17] | T. Hickel, A. Dick, B. Grabowski, F. Körmann, J. Neugebauer,Steel Res. Int. 80, 4(2009) |
[18] | J.H. Jun, C.S. Choi, Mater. Sci.Eng.A 257, 353 (1998) |
[19] | J. Foct, N. Akdut, G. Gottstein,Scr. Metall. Mater. 27, 1033(1992) |
[20] | N. Akdut, J. Foct, G. Gottstein,Steel Res. 67, 450(1996) |
[21] | J.Y. Choi, J.H. Ji, S.W. Hwang, K.T. Park, Mater. Sci.Eng.A 528, 6012 (2011) |
[22] | A.L. Schaeffler,Metall. Prog. 56, 680(1949) |
[23] | J.Y. Park, Y.S. Ahn,Kor. J. Met. Mater. 50, 793(2012) |
[24] | T.H. Lee, C.S. Oh, S.J. Kim,Scr. Mater. 58, 110(2008) |
[25] | D.Y. Ryoo, N. Kang, C.Y. Kang, Mater. Sci.Eng.A 528, 2277 (2011) |
[26] | J. He, G. Han, S. Fukuyama, K. Yokogawa,Mater. Sci. Technol. 15, 909(1999) |
[27] | T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, S. Koike, M. Ichihara, in Proceedings ICOMAT ‘, vol. 76, (1976), p. 339 |
[28] | N.C. Goel, S. Sangal, K. Tangri, Metall.Trans.A 16, 2013 (1985) |
[29] | T. Angel,J. Iron Steel Inst. 177, 165(1954) |
[30] | K.I. Sugimoto, M. Kobayashi, S.I. Hashimoto, Metall. Trans.A 23, 3085 (1992) |
[31] | J.S. You, H. Hong, O.Y. Lee, K.G. Jin, S.J. Kim, J. Kor,Inst. Met. Mater. 42, 117(2004) |
[32] | B.C. Hwang, Y.G. Kim, S.H. Lee, W.G. Kim, D.H. Shin, J. Kor,Inst. Met. Mater. 44, 734(2006) |
[1] | Jun-Xiu Chen, Xiang-Ying Zhu, Li-Li Tan, Ke Yang, Xu-Ping Su. Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg-2Zn-xGd-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 205-216. |
[2] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[3] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
[4] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[5] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[6] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[7] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[8] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[9] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[10] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[11] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[12] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[13] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[14] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[15] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||