Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (6): 973-986.DOI: 10.1007/s40195-023-01520-z
Previous Articles Next Articles
Guo-Dong Liu1,2, Xue-Mei Luo1(), Ji-Peng Zou1,2, Bin Zhang3, Guang-Ping Zhang1(
)
Received:
2022-08-09
Revised:
2022-11-21
Accepted:
2022-12-06
Online:
2023-06-10
Published:
2023-02-08
Contact:
Xue‑Mei Luo,Guo-Dong Liu, Xue-Mei Luo, Ji-Peng Zou, Bin Zhang, Guang-Ping Zhang. Effects of Grain Size and Cryogenic Temperature on the Strain Hardening Behavior of VCoNi Medium-Entropy Alloys[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 973-986.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 EBSD orientation maps of recrystallized VCoNi with different grain sizes: a d = 3.1 ± 0.4 μm, b d = 10.6 ± 1.3 μm, c d = 18.7 ± 2.3 μm, d d = 41.6 ± 2.5 μm, e d = 139.4 ± 11.9 μm
Fig. 3 Tensile engineering stress-engineering plastic strain curves of the VCoNi alloys with different grain sizes at the three testing temperatures: a 293 K, b 194 K, c 77 K, the inset in c shows a small stress drop after yielding for D3 alloys that was tested at 77 K. d Yield strength versus uniform elongation for VCoNi alloys at three different temperatures, AISI 304 at 77 K [36], AISI 316L at 110 K [37], AISI 321 at 110 K [37], AISI 347 at 110 K [37], 9% Ni steel at 77 K [38]
Temperatures (K) | Specimen | d (μm) | σy (MPa) | σb (MPa) | εu (%) |
---|---|---|---|---|---|
293 | D3 | 3.1 ± 0.4 | 881.8 ± 3.9 | 1341.3 ± 15.8 | 49.05 ± 2.05 |
D11 | 10.6 ± 1.3 | 660.9 ± 33.4 | 1168.2 ± 63.5 | 60.2 ± 2.9 | |
D19 | 18.7 ± 2.3 | 573.2 ± 12.5 | 1102.4 ± 32.9 | 67.7 ± 2.27 | |
D42 | 41.6 ± 2.5 | 552 ± 8.7 | 1103.6 ± 19.1 | 72.45 ± 0.65 | |
D139 | 139.4 ± 11.9 | 485.2 ± 6.5 | 937 ± 34.6 | 76.35 ± 2.77 | |
194 | D6 | 5.5 ± 0.8 | 822.5 ± 7.5 | 1316.4 ± 15.5 | 54.1 ± 0.7 |
D13 | 13.2 ± 1.6 | 693.2 ± 12.5 | 1221.4 ± 26.3 | 61.7 ± 2.3 | |
D21 | 20.7 ± 2.9 | 611.8 ± 7.3 | 1171.4 ± 18.6 | 66.55 ± 2.55 | |
D55 | 54.8 ± 9 | 527.3 ± 3.2 | 1077.4 ± 5.6 | 76.05 ± 2.75 | |
D139 | 138.5 ± 21.3 | 505.4 ± 3.3 | 999.4 ± 2.1 | 77.45 ± 1.05 | |
77 | D3 | 3.1 ± 0.4 | 1218.3 ± 3.5 | 1746.7 ± 12.5 | 49.75 ± 0.95 |
D11 | 10.6 ± 1.3 | 903.8 ± 23.9 | 1570.1 ± 20.2 | 73.7 ± 1.5 | |
D19 | 18.7 ± 2.3 | 786.1 ± 15.4 | 1446.3 ± 35.2 | 75.51 ± 3.49 | |
D42 | 41.6 ± 2.5 | 732.1 ± 4.7 | 1388.8 ± 11.8 | 85.53 ± 3.16 | |
D139 | 139.4 ± 11.9 | 643.3 ± 12.1 | 1222.7 ± 23.8 | 85.3 ± 2.82 |
Table 1 σy, σb, εu of VCoNi alloys with different grain sizes deformed at 293 K, 194 K and 77 K
Temperatures (K) | Specimen | d (μm) | σy (MPa) | σb (MPa) | εu (%) |
---|---|---|---|---|---|
293 | D3 | 3.1 ± 0.4 | 881.8 ± 3.9 | 1341.3 ± 15.8 | 49.05 ± 2.05 |
D11 | 10.6 ± 1.3 | 660.9 ± 33.4 | 1168.2 ± 63.5 | 60.2 ± 2.9 | |
D19 | 18.7 ± 2.3 | 573.2 ± 12.5 | 1102.4 ± 32.9 | 67.7 ± 2.27 | |
D42 | 41.6 ± 2.5 | 552 ± 8.7 | 1103.6 ± 19.1 | 72.45 ± 0.65 | |
D139 | 139.4 ± 11.9 | 485.2 ± 6.5 | 937 ± 34.6 | 76.35 ± 2.77 | |
194 | D6 | 5.5 ± 0.8 | 822.5 ± 7.5 | 1316.4 ± 15.5 | 54.1 ± 0.7 |
D13 | 13.2 ± 1.6 | 693.2 ± 12.5 | 1221.4 ± 26.3 | 61.7 ± 2.3 | |
D21 | 20.7 ± 2.9 | 611.8 ± 7.3 | 1171.4 ± 18.6 | 66.55 ± 2.55 | |
D55 | 54.8 ± 9 | 527.3 ± 3.2 | 1077.4 ± 5.6 | 76.05 ± 2.75 | |
D139 | 138.5 ± 21.3 | 505.4 ± 3.3 | 999.4 ± 2.1 | 77.45 ± 1.05 | |
77 | D3 | 3.1 ± 0.4 | 1218.3 ± 3.5 | 1746.7 ± 12.5 | 49.75 ± 0.95 |
D11 | 10.6 ± 1.3 | 903.8 ± 23.9 | 1570.1 ± 20.2 | 73.7 ± 1.5 | |
D19 | 18.7 ± 2.3 | 786.1 ± 15.4 | 1446.3 ± 35.2 | 75.51 ± 3.49 | |
D42 | 41.6 ± 2.5 | 732.1 ± 4.7 | 1388.8 ± 11.8 | 85.53 ± 3.16 | |
D139 | 139.4 ± 11.9 | 643.3 ± 12.1 | 1222.7 ± 23.8 | 85.3 ± 2.82 |
Fig. 4 Θ versus true plastic strain for the alloys with five different grain sizes deformed at 293 K a, 194 K b, 77 K c, the inset in a shows strain hardening rate recovery ∆Θ. Variation of initial strain hardening rate of stage II Θ0 and ∆Θ with grain size at three deformation temperatures: 293 K d, 194 K e, 77 K f
Fig. 6 TEM bright-field micrographs with yellow dashed line of (111) slip trace and selected area diffraction patterns of the [011]-zone axis of uniform deformation area away from the fracture of D3 alloys and D42 alloys fractured at 293 K and 77 K: a D3 alloys at 293 K, b D3 alloys at 77 K, c D42 alloys at 293 K, d D42 alloys at 77 K
Fig. 7 TEM bright-field micrographs with yellow dashed line of (111) slip trace and selected area diffraction patterns of the [011]-zone axis of D42 alloys deformed at different true plastic strains at 293 K and 77 K: a 0.08 at 293 K, b 0.25 at 293 K, c 0.5 at 293 K, d 0.08 at 77 K, e 0.25 at 77 K, f 0.5 at 77 K
Fig. 8 TEM bright-field micrographs with yellow dashed line of (111) slip trace and selected area diffraction patterns of the [011]-zone axis of D3 alloys deformed at different true plastic strains at 293 K and 77 K: a 0.08 at 293 K, b 0.25 at 293 K, c 0.35 at 293 K, d 0.08 at 77 K, e 0.25 at 77 K, f 0.35 at 77 K
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299(2004)
DOI URL |
[2] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375, 213 (2004) |
[3] |
B.X. Cao, C. Wang, T. Yang, C.T. Liu, Scr. Mater. 187, 250(2020)
DOI URL |
[4] |
J.P. Zou, X.M. Luo, B. Zhang, Y.W. Luo, H.L. Chen, F. Liang, G.P. Zhang, Mater. Sci. Eng. A 831, 142281 (2022)
DOI URL |
[5] |
B. Schuh, F. Mendez-Martin, B. Volker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96, 258 (2015)
DOI URL |
[6] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater. 128, 292 (2017)
DOI URL |
[7] |
C.E. Slone, J. Miao, M.J. Mills, Scr. Mater. 155, 94(2018)
DOI URL |
[8] |
C.E. Slone, J. Miao, E.P. George, M.J. Mills, Acta Mater. 165, 496 (2019)
DOI |
[9] |
W.Q. Guo, J. Su, W.J. Lu, C.H. Liebscher, C. Kirchlechner, Y. Ikeda, F. Kormann, X. Liu, Y.F. Xue, G. Dehm, Acta Mater. 185, 45 (2020)
DOI URL |
[10] |
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574, 223 (2019)
DOI |
[11] |
E. Ma, X. Wu, Nat. Commun. 10, 5623(2019)
DOI |
[12] |
Q. Pan, L. Zhang, R. Feng, Q. Lu, K. An, A.C. Chuang, J.D. Poplawsky, P.K. Liaw, L. Lu, Science 374, 984 (2021)
DOI URL |
[13] |
F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743 (2013)
DOI URL |
[14] |
B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7, 10602(2016)
DOI PMID |
[15] |
J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B.J. Lee, H.S. Kim, Acta Mater. 161, 388 (2018)
DOI URL |
[16] |
S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, P.K. Liaw, Mater. Res. Lett. 5, 276 (2017)
DOI URL |
[17] |
P. Asghari-Rad, P. Sathiyamoorthi, J.W. Bae, J. Moon, J.M. Park, A. Zargaran, H.S. Kim, Mater. Sci. Eng. A 744, 610 (2019)
DOI URL |
[18] |
S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang, Mater. Sci. Eng. A 712, 603 (2018)
DOI URL |
[19] |
X. Liu, S. Jiang, J. Lu, J. Wei, D. Wei, F. He, J. Mater. Sci. Technol. 131, 177 (2022)
DOI URL |
[20] | S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Kormann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 31, e1807142 (2019) |
[21] |
H. Chung, D.W. Kim, W.J. Cho, H.N. Han, Y. Ikeda, S. Ishibashi, F. Körmann, S.S. Sohn, J. Mater. Sci. Technol. 108, 270 (2022)
DOI |
[22] |
Y. Pan, A. Dong, Y. Zhou, D. Du, D. Wang, G. Zhu, B. Sun, Mater. Sci. Eng. A 816, 141289 (2021)
DOI URL |
[23] |
Z.H. Han, C.Y. Ding, G. Liu, J. Yang, Y.Z. Du, R. Wei, Y.Q. Chen, G.J. Zhang, Intermetallics 132, 107126 (2021)
DOI URL |
[24] |
D.C. Yang, Y.H. Jo, Y. Ikeda, F. Kormann, S.S. Sohn, J. Mater. Sci. Technol. 90, 159 (2021)
DOI URL |
[25] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81, 428 (2014)
DOI URL |
[26] |
J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, Acta Mater. 132, 35 (2017)
DOI URL |
[27] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)
DOI PMID |
[28] | I. Ondicho, B. Alunda, F. Madaraka, M. Chepkoech, Acta Metall. Sin. -Engl. Lett. 34, 465 (2021) |
[29] |
R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takeinura, K. Kunishige, Scr. Mater. 59, 963(2008)
DOI URL |
[30] |
H. Li, S. Gao, Y. Tomota, S. Ii, N. Tsuji, T. Ohmura, Acta Mater. 206, 116621 (2021)
DOI URL |
[31] |
C. Tong, Q. Rong, V.A. Yardley, Z. Shi, X. Li, B. Zhang, D. Xu, J. Lin, J. Mater. Process. Technol. 306, 117623 (2022)
DOI URL |
[32] | W.G. Johnston, J.J. Gilman, J. Appl. Phys. 30, 129 (1959) |
[33] |
W.G. Johnston, J. Appl. Phys. 33, 2716 (1962)
DOI URL |
[34] |
M. Schneider, G. Laplanche, Acta Mater. 204, 116470 (2021)
DOI URL |
[35] |
C. Varvenne, A. Luque, W.A. Curtin, Acta Mater. 118, 164 (2016)
DOI URL |
[36] |
C.S. Zheng, W.W. Yu, Mater. Sci. Eng. A 710, 359 (2018)
DOI URL |
[37] |
J.H. Kim, S.K. Kim, C.S. Lee, M.H. Kim, J.M. Lee, Int. J. Mech. Sci. 87, 218(2014)
DOI URL |
[38] |
H.S. Shin, H.M. Lee, M.S. Kim, Int. J. Impact Eng. 24, 571 (2000)
DOI URL |
[39] |
F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Acta Mater. 60, 1059 (2012)
DOI URL |
[40] |
D. Han, X.J. Guan, Y. Yan, F. Shi, X.W. Li, Mater. Sci. Eng. A 743, 745 (2019)
DOI URL |
[41] |
D.R. Steinmetz, T. Japel, B. Wietbrock, P. Eisenlohr, I. Gutierrez- Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, D. Raabe, Acta Mater. 61, 494 (2013)
DOI URL |
[42] |
I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 60, 5791 (2012)
DOI URL |
[43] |
E. Welsch, D. Ponge, S.M.H. Haghighat, S. Sandlobes, P. Choi, M. Herbig, S. Zaefferer, D. Raabe, Acta Mater. 116, 188 (2016)
DOI URL |
[44] |
L.L. Wei, G.H. Gao, J. Kim, R.D.K. Misra, C.G. Yang, X.J. Jin, Mater. Sci. Eng. A 838, 142829 (2022)
DOI URL |
[45] |
C.L. Yang, Z.J. Zhang, T. Cai, P. Zhang, Z.F. Zhang, Sci. Rep. 5, 15532(2015)
DOI PMID |
[46] | Q.M. Wang, Y.J. Zhang, D. Han, X.W. Li, Acta Metall. Sin. -Engl. Lett. 35, 651 (2021) |
[47] |
M.J. Yao, E. Welsch, D. Ponge, S.M.H. Haghighat, S. Sandlöbes, P. Choi, M. Herbig, I. Bleskov, T. Hickel, M. Lipinska-Chwalek, P. Shanthraj, C. Scheu, S. Zaefferer, B. Gault, D. Raabe, Acta Mater. 140, 258 (2017)
DOI URL |
[48] | H. Jiang, T.D. Huang, C. Su, H.B. Zhang, K.M. Han, S.X. Qin, Acta Metall. Sin. -Engl. Lett. 33, 1117 (2020) |
[49] | J. Xie, H. Dong, Y. Hao, Z. Fan, C.A. Wang, Acta Metall. Sin. -Engl. Lett. 35, 1275 (2021) |
[50] | J. Olfe, H. Neuhäuser, Phys. Status Solidi A 109, 149 (1988) |
[51] |
N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M. Chen, H. Matsunoshita, K. Tanaka, H. Inui, E.P. George, Sci. Rep. 6, 35863(2016)
DOI |
[52] |
M. Schneider, E.P. George, T.J. Manescau, T. Zalezak, J. Hunfeld, A. Dlouhy, G. Eggeler, G. Laplanche, Int. J. Plast. 124, 155(2020)
DOI URL |
[53] |
F. de las Cuevas, M. Reis, A. Ferraiuolo, G. Pratolongo, L.P. Karjalainen, J. Alkorta, J. Gil Sevillano, Key Eng. Mater. 423, 147 (2009)
DOI URL |
[54] |
M. Odnobokova, A. Belyakov, R. Kaibyshev, Metals 5, 656 (2015)
DOI URL |
[55] |
C. Keller, E. Hug, Mater. Lett. 62, 1718 (2008)
DOI URL |
[56] |
U.F. Kocks, H. Mecking, Prog. Mater Sci. 48, 171 (2003)
DOI URL |
[57] |
I.S. Yasnikov, Y. Kaneko, M. Uchida, A. Vinogradov, Mater. Sci. Eng. A 831, 142330 (2022)
DOI URL |
[58] |
Y.M. Wang, E. Ma, Acta Mater. 52, 1699 (2004)
DOI URL |
[59] |
Y.G. Ko, D.H. Shin, K.T. Park, C.S. Lee, Scr. Mater. 54, 1785(2006)
DOI URL |
[60] |
Q.X. Shi, C.J. Wang, K.K. Deng, K.B. Nie, Y.C. Wu, W.M. Gan, W. Liang, J. Mater. Sci. Technol. 60, 8 (2021)
DOI URL |
[61] | G.I. Taylor, Proc. R. Soc. London 145, 362 (1934) |
[62] |
S. Haouala, S. Lucarini, J. Llorca, J. Segurado, J. Mech. Phys. Solids 134, 103755 (2020)
DOI URL |
[63] |
M. Jiang, G. Monnet, B. Devincre, Acta Mater. 209, 116783 (2021)
DOI URL |
[64] | X. Qin, C.H. Shek, Acta Metall. Sin. -Engl. Lett. 34, 1503 (2021) |
[65] | S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, N. Saibaba, Acta Metall. Sin. -Engl. Lett. 28, 837 (2015) |
[66] |
B. Gruber, I. Weissensteiner, T. Kremmer, F. Grabner, G. Falkinger, A. Schokel, F. Spieckermann, R. Schaublin, P.J. Uggowitzer, S. Pogatscher, Mater. Sci. Eng. A 795, 139935 (2020)
DOI URL |
[67] |
C. Keller, E. Hug, Int. J. Plast. 98, 106(2017)
DOI URL |
[68] |
F. Barlat, M.V. Glazov, J.C. Brem, D.J. Lege, Int. J. Plast. 18, 919(2002)
DOI URL |
[1] | Ming-Jie Zhao, Liang Huang, Chang-Min Li, Jia-Hui Xu, Xu-Yang Li, Jian-Jun Li, Peng-Chuan Li, Chao-Yuan Sun. Investigation and Modeling of Austenite Grain Evolution for a Typical High-strength Low-alloy Steel during Soaking and Deformation Process [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 996-1010. |
[2] | H. R. Rezaei Ashtiani, A. A. Shayanpoor. Effect of Initial Grain Size on the Hot Deformation Behavior and Microstructural Evolution of Pure Copper [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 662-678. |
[3] | Shouqing Zhang, Xiaofeng Hu, Haichang Jiang, Lijian Rong. Effect of Cooling Rate on Microstructure and Effective Grain Size for a Ni-Cr-Mo-B High-Strength Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1862-1872. |
[4] | Jie Cui, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Fluidity, Microstructure, and Tensile Properties of Sub-rapidly Solidified Mg-6Al-4Zn-xSn (x = 0, 0.6, 1.2, 1.8) Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1265-1276. |
[5] | Hui-Hu Lu, Xing-Quan Shen, Wei Liang. Effect of Grain Size on the Precipitation Behaviour in Super-Ferritic Stainless Steels During a Long-Term Ageing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1285-1295. |
[6] | Jiafen Song, Zishu Chai, Jian Zheng, Qingfeng Wu, Feng He, Zenan Yang, Junjie Li, Jincheng Wang, Haiou Yang, Zhijun Wang. Design Fe-based Eutectic Medium-Entropy Alloys Fe2NiCrNbx [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1103-1108. |
[7] | Leipeng Duan, Kang Wang, Engang Wang, Peng Jia. Precipitation of α-Fe from Fe84-xSi4B12+x (x = 1, 3) Amorphous Alloys Under High Magnetic Field Annealing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1163-1172. |
[8] | Xiaohui Shi, Zuhan Cao, Zhiyuan Fan, Ruipeng Guo, Junwei Qiao. Probing into the Yield Plateau Phenomenon in Commercially Pure Titanium During Tensile Tests [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 701-709. |
[9] | Jun Zhang, Ji-De Liu, Xin-Fang Zhang, Chuan-Yong Cui, Jin-Guo Li, Yi-Zhou Zhou, Bao-Quan Wang, Jing-Dong Guo. Effect of High Density Current Pulses on Microstructure and Mechanical Properties of Dual-Phase Wrought Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1635-1644. |
[10] | Yong Xie, Zhixin Xia, Jixin Hou, Jiachao Xu, Peng Chen, Le Wan. Effect of Cu-Rich Phase Precipitation on the Microstructure and Mechanical Properties of CoCrNiCux Medium-Entropy Alloys Prepared via Laser Directed Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1591-1600. |
[11] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[12] | Bang Dou, Hui Zhang, Jia-Hao Zhu, Ben-Qi Xu, Zi-Yi Zhou, Ji-Li Wu. Uniformly Dispersed Carbide Reinforcements in the Medium-Entropy High-Speed Steel Coatings by Wide-Band Laser Cladding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1145-1150. |
[13] | Pei Li, Danhui Hou, En-Hou Han, Rongshi Chen, Zhiwei Shan. Solidification of Mg-Zn-Zr Alloys: Grain Growth Restriction, Dendrite Coherency and Grain Size [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1477-1486. |
[14] | Guodong Hu, Pei Wang, Dianzhong Li, Yiyi Li. High-temperature Tensile Behavior in Coarse-grained and Fine-grained Nb-containing 25Cr-20Ni Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1455-1465. |
[15] | Wen Wang, Peng Han, Jie Yuan, Pai Peng, Qiang Liu, Fei Qiang, Ke Qiao, Kuai-She Wang. Enhanced Mechanical Properties of Pure Zirconium via Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 147-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||