Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (2): 266-280.DOI: 10.1007/s40195-022-01460-0
Previous Articles Next Articles
Tianjiao Li1, Jiang Zheng1,2, Lihong Xia3(), Haoge Shou1, Yongfa Zhang1, Rong Shi1, Liuyong He1, Wenkai Li4
Received:
2022-05-29
Revised:
2022-07-26
Accepted:
2022-07-27
Online:
2023-02-10
Published:
2022-09-30
Contact:
Lihong Xia, lhxia@ctbu.edu.cn
Tianjiao Li, Jiang Zheng, Lihong Xia, Haoge Shou, Yongfa Zhang, Rong Shi, Liuyong He, Wenkai Li. Tailoring Texture to Highly Strengthen AZ31 Alloy Plate in the Thickness Direction via Pre-tension and Rolling-Annealing[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 266-280.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic diagram showing the PTRA processing. The black dashed arrows represent the processing sequence. The second rolling direction (RD2) is parallel to the ND of the AR sheets
Fig. 2 Representative microstructures and texture characteristics of the AR AZ31 plate in the RD-TD plane: a EBSD inverse pole figure (IPF) map along RD; b (0002) pole figure (PF)
Fig. 3 Microstructural evolution under PTRA processing. IPF maps of the a AR sample, b PT sample, c PTR sample, d PTRA sample; corresponding (0002) PF of the e AR sample, f PT sample, g PTR sample, h PTRA sample. Grains in dashed boxes of b and c are marked as Grains A and B for subsequent analysis of microstructure evolution, respectively
Fig. 5 Representative microstructures of the AR and PTRA samples after tensile deformation. The first column: EBSD IPF maps of a the AR-2% sample, d the AR-10% sample, g the PTRA-2% sample, and j the PTRA-10% sample; the second column: grain boundary (black lines) and twin boundary (red lines) maps of b the AR-2% sample, e the AR-10% sample, h the PTRA-2% sample, and k the PTRA-10% sample; the third column: density distribution of geometrically necessary dislocation (GND) of c the AR-2% sample, f the AR-10% sample, i the PTRA-2% sample, and l the PTRA-10% sample. Note that grains in the black boxes of a,d, g, and j are marked as Grains C, D, E, and F, respectively
Slip systems | Slip plane and slip direction | Axes |
---|---|---|
Basal slip | (0001) < 11-20 > | < 1-100 > |
Prismatic slip | (10-10) < -12-10 > | <0 001 > |
2nd Pyramidal slip | (11-22) < -1-123 > | < 1-100 > |
Table 1 Slip systems available in Mg and corresponding segregation axes [28]
Slip systems | Slip plane and slip direction | Axes |
---|---|---|
Basal slip | (0001) < 11-20 > | < 1-100 > |
Prismatic slip | (10-10) < -12-10 > | <0 001 > |
2nd Pyramidal slip | (11-22) < -1-123 > | < 1-100 > |
Fig. 6 Analysis of the activation of dislocation slip in the tensile AR and PTRA samples by IGMA: a IGMA distribution of Grain C in the AR-2% sample, b distribution of misorientation axes for all the points-pair between points C1 and C2; c IGMA distribution of Grain (twin) D in the AR-10% sample, d distribution of misorientation axes for all the points-pair between points D1 and D2; e IGMA distribution of Grain E in the PTRA-2% sample, f distribution of misorientation axes for all the points-pair between points E1 and E2; g IGMA distribution of Grain F in the PTRA-10% sample, h distribution of misorientation axes for all the points-pair between point F1 and F2. In the IGMA distribution map, the numbers before and after the slash represent the minimum and maximum intensity values of the IGMA concentration, respectively
Fig. 7 Statistical histogram of the activated slip systems in terms of global SF distribution in the a AR; b PTRA samples with 2% and 10% tensile strain. The first two numbers in parentheses represent the total number of grains showing a particular slip system at 2% and 10% tensile strain in sequence. Percentages in the parentheses represent the proportion of grains showing a particular slip system in the total grains showing dislocation slip
Fig. 8 Representative Grain A showing the morphology and crystallographic characteristics of twins in the PT sample: a IPF map of Grain A; MA and AT1-AT6 represent the matrix and six {10-12} tension twin variants, respectively; b scattered (0002) PF of MA and AT1-AT6 showing crystallographic relationship; c Scattered (10-12) PF of MA, AT1, and AT5 demonstrating their orientation relationship of twinning
Grain | Twinning system | φ1 | Φ | φ2 | SF1 (T//ND) | SF2 (C//RD) | SF3 (C//TD) |
---|---|---|---|---|---|---|---|
MA | - | 96.8° | 1.5° | 12.2° | - | - | - |
AT1 | (10-12) < -1011 > | 18.9° | 94.0° | 28.7° | 0.498 | 0.052 | 0.446 |
AT2 | (01-12) < 0-111 > | 79.0° | 87.7° | 29.3° | 0.500 | 0.482 | 0.018 |
AT3 | (-1102) < 1-101 > | 138.9° | 87.8° | 31.0° | 0.500 | 0.215 | 0.286 |
AT4 | (-1012) < 10-11 > | 19.1° | 86.6° | 28.6° | 0.499 | 0.053 | 0.446 |
AT5 | (0-112) < 01-11 > | 79.0° | 95.1° | 29.5° | 0.497 | 0.479 | 0.018 |
AT6 | (1-102) < -1101 > | 139.1° | 95.2° | 29.7° | 0.498 | 0.210 | 0.289 |
Table 2 Euler angles of matrix and six {10-12} tension twin variants in Grain A and SF values for twinning under various loads
Grain | Twinning system | φ1 | Φ | φ2 | SF1 (T//ND) | SF2 (C//RD) | SF3 (C//TD) |
---|---|---|---|---|---|---|---|
MA | - | 96.8° | 1.5° | 12.2° | - | - | - |
AT1 | (10-12) < -1011 > | 18.9° | 94.0° | 28.7° | 0.498 | 0.052 | 0.446 |
AT2 | (01-12) < 0-111 > | 79.0° | 87.7° | 29.3° | 0.500 | 0.482 | 0.018 |
AT3 | (-1102) < 1-101 > | 138.9° | 87.8° | 31.0° | 0.500 | 0.215 | 0.286 |
AT4 | (-1012) < 10-11 > | 19.1° | 86.6° | 28.6° | 0.499 | 0.053 | 0.446 |
AT5 | (0-112) < 01-11 > | 79.0° | 95.1° | 29.5° | 0.497 | 0.479 | 0.018 |
AT6 | (1-102) < -1101 > | 139.1° | 95.2° | 29.7° | 0.498 | 0.210 | 0.289 |
Grain | Twinning system | φ1 | Φ | φ2 | SF1(T//ND) | SF2(C//RD) | SF3(C//TD) |
---|---|---|---|---|---|---|---|
MB | - | 124.9° | 0.7° | 17.3° | - | - | - |
BT1 | (10-12) < -1011 > | 52.1° | 86.6° | 29.5° | 0.499 | 0.009 | 0.489 |
BT2 | (01-12) < 0-111 > | 112.6° | 87.0° | 29.7° | 0.500 | 0.428 | 0.071 |
BT3 | (-1102) < 1-101 > | 172.2° | 94.2° | 30.5° | 0.498 | 0.215 | 0.286 |
BT4 | (-1012) < 10-11 > | 52.5° | 93.9° | 29.6° | 0.499 | 0.311 | 0.188 |
BT5 | (0-112) < 01-11 > | 112.2° | 94.4° | 29.5° | 0.498 | 0.427 | 0.071 |
BT6 | (1-102) < -1101 > | 172.3° | 86.8° | 30.5° | 0.499 | 0.009 | 0.490 |
BT31 | (10-12) < -1011 > | 75.5° | 120.0° | 53.0° | - | 0.343 | - |
BT32 | (01-12) < 0-111 > | 168.8° | 7.9° | 33.6° | - | 0.009 | - |
BT33 | (-1102) < 1-101 > | 88.8° | 61.0° | 53.1° | - | 0.374 | - |
BT34 | (-1012) < 10-11 > | 84.0° | 120.7° | 57.3° | - | 0.358 | - |
BT35 | (0-112) < 01-11 > | 127.9° | 0.7° | 14.2° | - | 0.009 | - |
BT36 | (1-102) < -1101 > | 80.3° | 60.3° | 57.3° | - | 0.359 | - |
Table 3 Euler angles of the matrix, six {10-12} tension twin variants in Grain B, and two {10-12}-{10-12} secondary tension twins in the primary BT3 twin with SF values for twinning under various loads
Grain | Twinning system | φ1 | Φ | φ2 | SF1(T//ND) | SF2(C//RD) | SF3(C//TD) |
---|---|---|---|---|---|---|---|
MB | - | 124.9° | 0.7° | 17.3° | - | - | - |
BT1 | (10-12) < -1011 > | 52.1° | 86.6° | 29.5° | 0.499 | 0.009 | 0.489 |
BT2 | (01-12) < 0-111 > | 112.6° | 87.0° | 29.7° | 0.500 | 0.428 | 0.071 |
BT3 | (-1102) < 1-101 > | 172.2° | 94.2° | 30.5° | 0.498 | 0.215 | 0.286 |
BT4 | (-1012) < 10-11 > | 52.5° | 93.9° | 29.6° | 0.499 | 0.311 | 0.188 |
BT5 | (0-112) < 01-11 > | 112.2° | 94.4° | 29.5° | 0.498 | 0.427 | 0.071 |
BT6 | (1-102) < -1101 > | 172.3° | 86.8° | 30.5° | 0.499 | 0.009 | 0.490 |
BT31 | (10-12) < -1011 > | 75.5° | 120.0° | 53.0° | - | 0.343 | - |
BT32 | (01-12) < 0-111 > | 168.8° | 7.9° | 33.6° | - | 0.009 | - |
BT33 | (-1102) < 1-101 > | 88.8° | 61.0° | 53.1° | - | 0.374 | - |
BT34 | (-1012) < 10-11 > | 84.0° | 120.7° | 57.3° | - | 0.358 | - |
BT35 | (0-112) < 01-11 > | 127.9° | 0.7° | 14.2° | - | 0.009 | - |
BT36 | (1-102) < -1101 > | 80.3° | 60.3° | 57.3° | - | 0.359 | - |
Fig. 9 Representative Grain B showing the morphology and crystallographic characteristics of twins in the PTR sample: a IPF map of Grain B; MB and BT1-BT6 represent matrix and six {10-12} tension twin variants, respectively. BT34 and BT36 denote the {10-12}-{10-12} secondary tension twins in the primary BT3 twin; b scattered (0002) PF of MB, BT1-BT6, BT34, and BT36 showing crystallographic relationship; c scattered (10-12) PF of MB, BT3, and BT34 demonstrating their orientation relationship of twinning
Fig. 11 a Representative Grain G with no twins, Grain H with single twin variant, and Grain I with multiple twin variants selected from the PT sample showing the inhomogeneous distribution of KAM; Grain J with composite reticular twins selected from PTR sample showing the more homogeneous distribution of KAM; b statistical diagram of KAM value of Grains G-J; c the distribution of KAM of line AB (area away from twins) and line CD (area close to twins) in Grain I showing the heterogeneous distribution of KAM inside grains
Fig. 12 Distribution of SF of different deformation modes (slip/twinning) for the AR and PTRA samples in tension along the ND. The value in the upper left corner of each figure represents the corresponding mean value of the SF
Fig. 13 Deformation mode analysis based on the criterion of the minimum activation stress (CRSS/SF) in the AR and PTRA samples: a SF as a function of θ and α; b distribution of the minimum activation stress as a function of θ. c Schematic diagram illustrating the distribution of θ in the AR and PTRA samples based on the texture characteristics, as shown in Figs. 2b and 3h
[1] |
X.C. Ma, S.Y. Jin, R.Z. Wu, J.X. Wang, G.X. Wang, B.L. Krit, S. Betsofen, Trans. Nonferrous Met. Soc. 31, 3228 (2021)
DOI URL |
[2] |
S.Y. Jin, X.C. Ma, R.Z. Wu, T.Q. Li, J.X. Wang, B.L. Krit, L.G. Hou, J.H. Zhang, G.X. Wang, Int. J. Min. Met. Mater. 29, 1453 (2022)
DOI URL |
[3] |
C.M. Cepeda-Jiménez, M.T. Pérez-Prado, Acta Mater. 108, 304 (2016)
DOI URL |
[4] |
S.G. Hong, S.H. Park, C.S. Lee, Acta Mater. 58, 5873 (2010)
DOI URL |
[5] |
M.R. Barnett, Mater. Sci. Eng. A 464, 1 (2007)
DOI URL |
[6] |
A.E. Davis, J.D. Robson, M. Turski, Mater. Sci. Eng. A 744, 525 (2019)
DOI URL |
[7] |
B.D. Shi, C. Yang, Y. Peng, F.C. Zhang, F.S. Pan, J. Magnes. Alloy. 10, 1476 (2022)
DOI URL |
[8] |
L. Wu, S.R. Agnew, Y. Ren, D.W. Brown, B. Clausen, G.M. Stoica, H.R. Wenk, P.K. Liaw, Mater. Sci. Eng. A 527, 7057 (2010)
DOI URL |
[9] |
L.Y. Zhao, B. Guan, Y.C. Xin, X.X. Huang, C.L. Liu, P.D. Wu, Q. Liu, Acta Mater. 214, 117013 (2021)
DOI URL |
[10] |
Y. Cheng, Y.J. Fu, Y.C. Xin, G. Chen, P.D. Wu, X.X. Huang, Q. Liu, Int. J. Plast. 132, 102754 (2020)
DOI URL |
[11] |
Y.J. Fu, Y. Cheng, Y. Cui, Y.C. Xin, S.W. Shi, G. Chen, J. Magnes. Alloy. 10, 478 (2022)
DOI URL |
[12] |
K. Wei, R. Hu, D.D. Yin, L.R. Xiao, S. Pang, Y. Cao, H. Zhou, Y.H. Zhao, Y.T. Zhu, Acta Mater. 206, 116604 (2021)
DOI URL |
[13] |
J. Suh, J. Victoria-Hernández, D. Letzig, R. Golle, W. Volk, Mater. Sci. Eng. A 650, 523 (2016)
DOI URL |
[14] |
L. Zhao, M.N. Zhang, J.H. Wang, B. Shi, P.P. Jin, Mater. Charact. 167, 110496 (2020)
DOI URL |
[15] | F.W. Jiao, L. Jin, J. Dong, F.H. Wang, Acta Metall. Sin. -Engl. Lett. 32, 263 (2018) |
[16] |
A. Kula, X. Jia, R.K. Mishra, M. Niewczas, Int. J. Plas. 92, 96 (2017)
DOI URL |
[17] |
J.F. Nie, Y.M. Zhu, J.Z. Liu, X.Y. Fang, Science 340, 957 (2013)
DOI PMID |
[18] |
T.J. Li, J. Zheng, H.G. Shou, R. Shi, Y.F. Zhang, G.L. Wen, K. Huang, D.D. Yin, J.S. Rao, Mater. Sci. Eng. A 839, 142838 (2022)
DOI URL |
[19] |
X. Luo, Z.Q. Feng, T.B. Yu, J.Q. Luo, T.L. Huang, G.L. Wu, N. Hansen, X.X. Huang, Acta Mater. 183, 398 (2020)
DOI URL |
[20] |
A. Kula, X. Jia, R.K. Mishra, M. Niewczas, Metall. Mater. Trans. B 47, 3333 (2015)
DOI URL |
[21] | W. Wang, P. Han, P. Peng, T. Zhang, Q. Liu, S.N. Yuan, L.Y. Huang, H.L. Yu, K. Qiao, K.S. Wang, Acta Metall. Sin. -Engl. Lett. 33, 43 (2019) |
[22] | W. Wang, S.Y. Chen, K. Qiao, P. Peng, P. Han, B. Wu, C.X. Wang, J. Wang, Y.H. Wang, K.S. Wang, Acta Metall. Sin. -Engl. Lett. 35, 703 (2021) |
[23] | J.H. Wang, L. Xu, R.Z. Wu, J. Feng, J.H. Zhang, L.G. Hou, M.L. Zhang, Acta Metall. Sin. -Engl. Lett. 33, 490 (2020) |
[24] | J.L. Zhang, H. Liu, X. Chen, Q. Zou, G.S. Huang, B. Jiang, A.T. Tang, F.S. Pan, Acta Metall. Sin. -Engl. Lett. 35, 727 (2021) |
[25] | T. Tu, X.H. Chen, J. Chen, C.Y. Zhao, F.S. Pan, Acta Metall. Sin. -Engl. Lett. 32, 23 (2018) |
[26] | C.Y. Zhao, X.H. Chen, P. Peng, T. Tu, A. Atrens, F.S. Pan, Acta Metall. Sin. -Engl. Lett. 33, 1217 (2020) |
[27] |
L.Y. Zhao, W.H. Chen, B.A. Zhou, C. He, C.J. Yan, Z.Y. Jin, H.H. Yu, Y.C. Xin, J. Magnes. Alloy. 10, 1680 (2022)
DOI URL |
[28] |
Y.B. Chun, M. Battaini, C.H.J. Davies, S.K. Hwang, Metall. Mater. Trans. A 41, 3473 (2010)
DOI URL |
[29] |
F. Bachmann, R. Hielscher, H. Schaeben, Solid. State. Phenom. 160, 63 (2010)
DOI URL |
[30] |
R. Hielscher, C.B. Silbermann, E. Schmidl, J. Ihlemann, J. Appl. Crystallogr. 52, 984 (2019)
DOI URL |
[31] |
M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, S.R. Kalidindi, Acta Mater. 58, 6230 (2010)
DOI URL |
[32] |
J.R. Luo, A. Godfrey, W. Liu, Q. Liu, Acta Mater. 60, 1986 (2012)
DOI URL |
[33] | S.J. Meng, H. Yu, S.D. Fan, Q.Z. Li, S.H. Park, J.S. Suh, Y.M. Kim, X.L. Nan, M.Z. Bian, F.X. Yin, W.M. Zhao, B.S. You, K.S. Shin, Acta Metall. Sin. -Engl. Lett. 32, 168 (2019) |
[34] |
L. Li, C.C. Zhang, H. Lv, C.R. Liu, Z.Z. Wen, J.W. Jiang, J. Magnes. Alloy. 10, 249 (2022)
DOI URL |
[35] |
A. Gokhale, R. Sarvesha, T.S. Guruprasad, S.S. Singh, J. Jain, Mater. Sci. Eng. A 816, 141258 (2021)
DOI URL |
[36] |
S.I. Inoue, M. Yamasaki, M. Ohata, S. Kakiuchi, Y. Kawamura, H. Terasaki, Mater. Sci. Eng. A 799, 140090 (2021)
DOI URL |
[37] |
B. Guan, Y.C. Xin, X.X. Huang, P.D. Wu, Q. Liu, Acta Mater. 173, 142 (2019)
DOI |
[38] |
P.F. Zhang, Y.C. Xin, L. Zhang, S.W. Pan, Q. Liu, J. Mater. Sci. Technol. 41, 98 (2020)
DOI URL |
[39] |
J.U. Lee, Y.J. Kim, S.H. Park, Mater. Sci. Eng. A 826, 141974 (2021)
DOI URL |
[40] |
Y.C. Xin, H. Zhou, H.H. Yu, R. Hong, H. Zhang, Q. Liu, Mater. Sci. Eng. A 622, 178 (2015)
DOI URL |
[41] |
R.L. Xin, C.F. Guo, Z.R. Xu, G.D. Liu, X.X. Huang, Q. Liu, Scr. Mater. 74, 96 (2014)
DOI URL |
[42] |
Y.C. Xin, X.J. Zhou, Q. Liu, Mater. Sci. Eng. A 567, 9 (2013)
DOI URL |
[43] |
H.G. Shou, J. Zheng, Y.F. Zhang, D. Long, J.S. Rao, Q. Liu, J. Alloy. Compd. 784, 1187 (2019)
DOI URL |
[44] |
S. Xu, T.M. Liu, H.C. Chen, Z.C. Miao, Z. Zhang, W. Zeng, Mater. Sci. Eng. 565, 96 (2013)
DOI URL |
[45] |
Y.J. Kim, J.U. Lee, Y.M. Kim, S.H. Park, J. Magnes. Alloy. 9, 1233 (2021)
DOI URL |
[46] |
A. Levinson, R.K. Mishra, R.D. Doherty, S.R. Kalidindi, Acta Mater. 61, 5966 (2013)
DOI URL |
[47] |
Y.C. Xin, H. Zhou, G.L. Wu, H.H. Yu, A. Chapuis, Q. Liu, Mater. Sci. Eng. A 639, 534 (2015)
DOI URL |
[48] |
J. Zhang, G.Q. Xi, X. Wan, C. Fang, Acta Mater. 133, 208 (2017)
DOI URL |
[49] |
F.L. Guo, H.H. Yu, C.Y. Wu, Y.C. Xin, C. He, Q. Liu, Sci. Rep. 7, 8647 (2017)
DOI URL |
[50] |
R. Shi, J. Zheng, T.J. Li, H.G. Shou, D.D. Yin, J.S. Rao, Mater. Sci. Eng. A 844, 143103 (2022)
DOI URL |
[51] |
Y.Q. Chai, C.J. Boehlert, Y.F. Wan, G.H. Huang, H. Zhou, J. Zheng, Q.D. Wang, D.D. Yin, Metall. Mater. Trans. A 52, 449 (2021)
DOI URL |
[52] |
R. Ni, Z.W. Jiang, D.D. Yin, W. Yang, H. Zhou, J. Zheng, Q.D. Wang, Metall. Mater. Trans. A 53, 535 (2021)
DOI URL |
[53] |
D.D. Yin, C.J. Boehlert, L.J. Long, G.H. Huang, H. Zhou, J. Zheng, Q.D. Wang, Int. J. Plast. 136, 102878 (2021)
DOI URL |
[54] |
B.J. Zhou, L.Y. Wang, P.P. Jin, H.L. Jia, H.J. Roven, X.Q. Zeng, Y.J. Li, Int. J. Plast. 128, 102669 (2020)
DOI URL |
[55] |
H.H. Yu, C.Z. Li, Y.C. Xin, A. Chapuis, X.X. Huang, Acta Mater. 128, 313 (2017)
DOI URL |
[56] |
S. Ni, Y.B. Wang, X.Z. Liao, R.B. Figueiredo, H.Q. Li, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Acta Mater. 60, 3181 (2012)
DOI URL |
[57] |
S.R. Kalidindi, A.A. Salem, R.D. Doherty, Adv. Eng. Mater. 5, 229 (2003)
DOI URL |
[58] |
D. Culbertson, Q. Yu, J. Wang, Y.Y. Jiang, Mater. Charact. 134, 41 (2017)
DOI URL |
[59] |
H. El Kadiri, A.L. Oppedal, J. Mech. Phys. Solids 58, 613 (2010)
DOI URL |
[60] |
F.L. Wang, S.R. Agnew, Int. J. Plast. 81, 63 (2016)
DOI URL |
[61] |
P.D. Hou, F. Li, R.Z. Wu, R.H. Gao, A.X. Zhang, Mater. Des. 219, 110696 (2022)
DOI URL |
[62] |
D. Wang, S.J. Liu, R.Z. Wu, S. Zhang, Y. Wang, H.J. Wu, J.H. Zhang, L.G. Hou, J. Alloy. Compd. 881, 160663 (2021)
DOI URL |
[1] | Xihai Li, Hong Yan, Rongshi Chen. Tailoring the Texture and Mechanical Anisotropy of Multi-cross Rolled Mg-Zn-Gd Alloy by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 251-265. |
[2] | Chunxiao Li, Hong Yan, Rongshi Chen. Microstructure and Texture Evolution of Mg-14Gd-0.5Zr Alloy during Rolling and Annealing under Different Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 61-76. |
[3] | Fei Peng, Yunbo Xu, Xingli Gu. Control of Austenite Characteristics and Ferrite Formation Mechanism by Multiple-Cyclic Annealing in Quenching and Partitioning Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1143-1156. |
[4] | Zohreh Yazdani, Mohammad Reza Toroghinejad, Hossein Edris. Effects of Annealing on the Fabrication of Al-TiAl3 Nanocomposites Before and After Accumulative Roll Bonding and Evaluation of Strengthening Mechanisms [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 636-650. |
[5] | Dandan Liang, Xiaodi Liu, Yinghao Zhou, Yu Wei, Xianshun Wei, Gang Xu, Jun Shen. Effects of Annealing Below Glass Transition Temperature on the Wettability and Corrosion Performance of Fe-based Amorphous Coatings [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 243-253. |
[6] | Cunyun Hu, Hefei Huang, Zhenbo Zhu, Awen Liu, Yan Li. Effect of Post-irradiation Annealing on Microstructure Evolution and Hardening in GH3535 Alloy Irradiated by Au Ions [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1903-1911. |
[7] | Qinghang Wang, Haowei Zhai, Hongbo Xia, Lintao Liu, Junjie He, Dabiao Xia, Hong Yang, Bin Jiang. Relating Initial Texture to Deformation Behavior During Cold Rolling and Static Recrystallization Upon Subsequent Annealing of an Extruded WE43 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1793-1811. |
[8] | H.R. Lin, Y. Z. Tian, S.J. Sun, Z.F. Zhang. Microstructural Evolution and Mechanical Properties of Laminated CuAl Composites Processed by Accumulative Roll-Bonding and Annealing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 925-931. |
[9] | Jun Wang, Hongchao Li, Haoxue Yang, Yu Zhang, William YiWang, Jinshan Li. Hot Deformation and Subsequent Annealing on the Microstructure and Hardness of an Al0.3CoCrFeNi High-entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1527-1536. |
[10] | Xiaohui Shi, Zuhan Cao, Zhiyuan Fan, Junwei Qiao. Texture Evolution Behavior and Its Triggered Mechanical Anisotropy of CP Ti During Severe Cold Rolling and Subsequent Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1271-1282. |
[11] | Song-Wei Wang, Hong-Wu Song, Yan Chen, Shi-Hong Zhang, Hai-Hong Li. Evolution of Annealing Twins and Recrystallization Texture in Thin-Walled Copper Tube During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1618-1626. |
[12] | Sohail Ahmad, Li-Feng Lv, Li-Ming Fu, Huan-Rong Wang, Wei Wang, Ai-Dang Shan. Effect of Annealing on Microstructure and Mechanical Properties of Ultrafine-Grained Low-Carbon Medium-Manganese Steel Produced by Heavy Warm Rolling [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 361-371. |
[13] | Yang Wu, Yun-Chang Xin, Xiang-Sheng Xia, Bo Feng, Yan-Bin Wang, Zu-De Zhao. Influence of Annealing Treatments on Microstructure and Mechanical Properties of an Extruded Mg AZ31/Al 7050 Laminate [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(2): 227-234. |
[14] | Yong-Jin Wang, Ren-Bo Song, Ren-Feng Song. Phase Transformation and Carbide Precipitation of Functional Gradient Semi-solid 9Cr18 Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(8): 823-830. |
[15] | Hao Sun, Suo-Zhu Bai, Dan-Dan Yao, Bin Yao, Zhan-Hui Ding, Yong-Feng Li. Preparation and Characterization of Amorphous W-B-C Alloy and Solid Solutions of C in Tungsten Borides [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 380-388. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||