Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (11): 1857-1869.DOI: 10.1007/s40195-023-01588-7
Previous Articles Next Articles
Tiezhuang Han, Jing Wang(), Bo Li, Shuang Li, Kaisheng Ming, Fucheng Wang, Bin Miao, Shijian Zheng(
)
Received:
2023-05-06
Revised:
2023-06-27
Accepted:
2023-06-28
Online:
2023-11-10
Published:
2023-08-29
Contact:
Jing Wang, jingwang@hebut.edu.cn;
Shijian Zheng, sjzheng@hebut.edu.cn
Tiezhuang Han, Jing Wang, Bo Li, Shuang Li, Kaisheng Ming, Fucheng Wang, Bin Miao, Shijian Zheng. Intermediate Temperature Fatigue Induced Precipitation and Associated Corrosion in CrMnFeCoNi High Entropy Alloy[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1857-1869.
Add to citation manager EndNote|Ris|BibTeX
Total strain amplitude, Δεt/2 (%) | Stress amplitudea, Δσt/2 (MPa) | Plastic strain amplitudea, Δεp/2 (%) | Elastic strain amplitudea, Δεe/2 (%) | Number of cycles to failure | The time of fatigue until fracture (h) |
---|---|---|---|---|---|
0.2 | 281 | 0.05 | 0.15 | 37,246 | 33.2 |
0.5 | 343 | 0.30 | 0.20 | 1657 | 4.5 |
Table 1 Fatigue parameters of CrMnFeCoNi HEAs
Total strain amplitude, Δεt/2 (%) | Stress amplitudea, Δσt/2 (MPa) | Plastic strain amplitudea, Δεp/2 (%) | Elastic strain amplitudea, Δεe/2 (%) | Number of cycles to failure | The time of fatigue until fracture (h) |
---|---|---|---|---|---|
0.2 | 281 | 0.05 | 0.15 | 37,246 | 33.2 |
0.5 | 343 | 0.30 | 0.20 | 1657 | 4.5 |
Fig. 1 a XRD patterns of the HEA samples fatigued under different strain amplitudes at 500 °C; b EBSD inverse pole figure (IPF) maps; c EBSD phase maps and the corresponding zoom-in images are marked as I, II and III. Red and green represent the FCC matrix and the second phase, respectively. (b1, c1) Undeformed sample; (b2, c2) 0.2% sample; (b3, c3) 0.5% sample
Fig. 3 a BF-TEM image showing the distribution of precipitates in 0.2% sample; b HAADF image and the corresponding element maps of Cr, Mn, Fe, Co, and Ni; c, d SAED patterns taken along [$\stackrel{\mathrm{-}}{1}$ 0 $\stackrel{\mathrm{-}}{1}$] zone axis and [02 $\stackrel{\mathrm{-}}{1}$] zone axis from I and II in a, respectively
Position | Cr | Mn | Fe | Co | Ni |
---|---|---|---|---|---|
Cr-rich | 44.12 ± 1.28 | 11.30 ± 3.10 | 19.21 ± 0.65 | 18.22 ± 1.20 | 7.15 ± 0.23 |
NiMn-rich | 6.08 ± 0.57 | 49.37 ± 1.12 | 2.13 ± 1.90 | 6.10 ± 1.81 | 36.32 ± 0.66 |
Table 2 Chemical compositions of selected areas (at.%)
Position | Cr | Mn | Fe | Co | Ni |
---|---|---|---|---|---|
Cr-rich | 44.12 ± 1.28 | 11.30 ± 3.10 | 19.21 ± 0.65 | 18.22 ± 1.20 | 7.15 ± 0.23 |
NiMn-rich | 6.08 ± 0.57 | 49.37 ± 1.12 | 2.13 ± 1.90 | 6.10 ± 1.81 | 36.32 ± 0.66 |
Fig. 4 a BF-TEM image showing the distribution of precipitates in 0.5% sample; b HAADF image and the corresponding element maps of Cr, Mn, Fe, Co, and Ni; c, d SAED patterns taken along [010] zone axis and [$\stackrel{\mathrm{-}}{1}$ 01] zone axis from III and IV in a, respectively
Position | Cr | Mn | Fe | Co | Ni |
---|---|---|---|---|---|
Cr-rich | 43.73 ± 2.36 | 17.08 ± 2.21 | 18.37 ± 1.42 | 13.80 ± 3.10 | 7.02 ± 0.85 |
NiMn-rich | 3.85 ± 1.69 | 49.84 ± 0.32 | 2.63 ± 0.41 | 4.33 ± 1.23 | 39.35 ± 2.46 |
Table 3 Chemical compositions of selected areas (at.%)
Position | Cr | Mn | Fe | Co | Ni |
---|---|---|---|---|---|
Cr-rich | 43.73 ± 2.36 | 17.08 ± 2.21 | 18.37 ± 1.42 | 13.80 ± 3.10 | 7.02 ± 0.85 |
NiMn-rich | 3.85 ± 1.69 | 49.84 ± 0.32 | 2.63 ± 0.41 | 4.33 ± 1.23 | 39.35 ± 2.46 |
Condition | Ecorr (VSCE) | icorr (A/cm2) | ipass (A/cm2) | Epit (VSCE) |
---|---|---|---|---|
Undeformed | − 0.317 | 4.94 × 10-7 | 7.18 × 10-7 | 0.196 |
0.2% | − 0.344 | 3.13 × 10-7 | 1.09 × 10-6 | 0.014 |
0.5% | − 0.278 | 1.68 × 10-7 | - | − 0.034 |
Table 4 Electrochemical parameters derived from Fig. 5 for the three samples in 3.5 wt% NaCl solution
Condition | Ecorr (VSCE) | icorr (A/cm2) | ipass (A/cm2) | Epit (VSCE) |
---|---|---|---|---|
Undeformed | − 0.317 | 4.94 × 10-7 | 7.18 × 10-7 | 0.196 |
0.2% | − 0.344 | 3.13 × 10-7 | 1.09 × 10-6 | 0.014 |
0.5% | − 0.278 | 1.68 × 10-7 | - | − 0.034 |
Fig. 7 a Nyquist and b Bode plots of HEAs with different conditions in 3.5 wt% NaCl solution. The point diagram represents the experimental data, and the line diagram represents the fitting curve of the equivalent circuit model
Condition | Qf (Ω−1·cm−2·sn) | Rf (Ω·cm2) | Qdl (Ω−1·cm−2·sn) | Rct (Ω·cm2) | χ2 |
---|---|---|---|---|---|
Undeformed | 3.86 × 10-5 | 1.06 × 104 | 3.11 × 10-5 | 5.54 × 104 | 6.08 × 10-4 |
0.2% | 4.10 × 10-5 | 2.94 × 103 | 7.89 × 10-5 | 1.50 × 104 | 8.36 × 10-4 |
0.5% | 3.93 × 10-5 | 2.65 × 103 | 1.97 × 10-4 | 1.45 × 103 | 6.20 × 10-4 |
Table 5 EEC parameters for impedance spectra of HEAs in 3.5 wt% NaCl solution
Condition | Qf (Ω−1·cm−2·sn) | Rf (Ω·cm2) | Qdl (Ω−1·cm−2·sn) | Rct (Ω·cm2) | χ2 |
---|---|---|---|---|---|
Undeformed | 3.86 × 10-5 | 1.06 × 104 | 3.11 × 10-5 | 5.54 × 104 | 6.08 × 10-4 |
0.2% | 4.10 × 10-5 | 2.94 × 103 | 7.89 × 10-5 | 1.50 × 104 | 8.36 × 10-4 |
0.5% | 3.93 × 10-5 | 2.65 × 103 | 1.97 × 10-4 | 1.45 × 103 | 6.20 × 10-4 |
Fig. 8 Mott-Schottky curves of CrMnFeCoNi samples with different conditions in 3.5 wt% NaCl solution: a undeformed sample; b 0.2% sample; c 0.5% sample
Condition | ND (1020 cm−3) |
---|---|
Undeformed | 2.47 |
0.2% | 14.53 |
0.5% | 25.51 |
Table 6 ND values of the passive film of CrMnFeCoNi alloys in 3.5 wt% NaCl solution
Condition | ND (1020 cm−3) |
---|---|
Undeformed | 2.47 |
0.2% | 14.53 |
0.5% | 25.51 |
Fig. 9 HAADF images of 0.2% sample before immersion a and after immersion b; c local zoom image from the white square regions in b and the corresponding element maps of Cr, Mn, Fe, Co, Ni, and O
Fig. 10 a HAADF image of 0.5% sample showing the corresponding GBs morphology after immersion; b local zoom image from the white square region in a and the corresponding element maps of Cr, Mn, Fe, Co, Ni, and O. White and orange arrows represent corrosion of NiMn phases and GBs, respectively
Fig. 11 a HAADF image of 0.5% sample showing the corresponding intragranular morphology after immersion; b local zoom image from the white square region in a and the corresponding element maps of Cr, Mn, Fe, Co, Ni, and O
[1] |
X. Yang, S. Li, H. Qi, Int. J. Fatigue 70, 106 (2015)
DOI URL |
[2] | T.O. Olugbade, O.T. Ojo, B.O. Omiyale, E.O. Olutomilola, B.J. Olorunfemi, J. Braz. Soc. Mech. Sci. 43, 9 (2021) |
[3] |
X. Xu, Z. Liu, T. Zhao, Q. Cui, T. Zhang, X. Li, Corros. Sci. 182, 109282 (2021)
DOI URL |
[4] | M. Guérin, J. Alexis, E. Andrieu, C. Blanc, G. Odemer, Mater. Des. 87, 15 (2015) |
[5] |
X. Chen, L. Yang, H. Dai, S. Shi, Eng. Fail. Anal. 113, 104556 (2020)
DOI URL |
[6] | Z.Y. Nan, S. Ishihara, T. Goshima, Int. J. Fatigue 30, 7 (2008) |
[7] |
W. Zhao, Y. Wang, T. Zhang, Y. Wang, Corros. Sci. 57, 99 (2012)
DOI URL |
[8] |
K. Lu, A. Chauhan, D. Litvinov, M. Walter, A.S. Tirunilai, J. Freudenberger, A. Kauffmann, M. Heilmaier, J. Aktaa, Mater. Sci. Eng. A 791, 139781 (2020)
DOI URL |
[9] |
P. Sathiyamoorthi, H.S. Kim, Prog. Mater. Sci. 123, 100709 (2022)
DOI URL |
[10] |
Y. Fu, J. Li, H. Luo, C. Du, X. Li, J. Mater. Sci. Technol. 80, 217 (2021)
DOI URL |
[11] | B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 6201 (2014) |
[12] |
X. Shang, Z. Wang, F. He, J. Wang, J. Li, J. Yu, Sci. China-Technol. Sci. 61, 2 (2018)
DOI URL |
[13] | C.C. Tasan, Y. Deng, K.G. Pradeep, M.J. Yao, H. Springer, D. Raabe, JOM 66, 10 (2014) |
[14] |
N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, O.N. Senkov, J. Alloy. Compd. 628, 170 (2015)
DOI URL |
[15] |
M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, Y. Champion, Acta Mater. 88, 355 (2015)
DOI URL |
[16] |
R. Daniel, J. Zalesak, I. Matko, W. Baumegger, A. Hohenwarter, E.P. George, J. Keckes, Acta Mater. 223, 117470 (2022)
DOI URL |
[17] |
K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61, 4887 (2013)
DOI URL |
[18] |
F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Acta Mater. 112, 40 (2016)
DOI URL |
[19] |
E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, N.G. Jones, Scr. Mater. 113, 106 (2016)
DOI URL |
[20] |
K.H. Lee, S. Hong, S.I. Hong, Materialia 8, 100445 (2019)
DOI URL |
[21] |
B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96, 258 (2015)
DOI URL |
[22] |
W. Zhou, L.M. Fu, P. Liu, X.D. Xu, B. Chen, G.Z. Zhu, X.D. Wang, A.D. Shan, M.W. Chen, Intermetallics 85, 90 (2017)
DOI URL |
[23] | Y. Wang, Y. Deng, J. Chen, Q. Dai, X. Guo, J. Mater. Res. Technol. 9, 3 (2020) |
[24] |
B. Zhang, J. Wang, B. Wu, E. Oguzie, K. Luo, X.L. Ma, Sci. Rep. 6, 1 (2016)
DOI |
[25] |
X.T. Duan, T.Z. Han, X. Guan, Y.N. Wang, H.H. Su, K.S. Ming, J. Wang, S.J. Zheng, J. Mater. Sci. Technol. 136, 97 (2023)
DOI URL |
[26] |
Z.J. Shi, Z.B. Wang, X.D. Wang, S. Zhang, Y.G. Zheng, J. Alloy. Compd. 903, 163886 (2022)
DOI URL |
[27] | K.D. Ralston, N. Birbilis, Corrosion 66, 7 (2010) |
[28] | F. Otto, Y. Yang, H. Bei, E.P. George, Acta Mater. 61, 7 (2013) |
[29] |
J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, Z.P. Lu, Intermetallics 55, 9 (2014)
DOI URL |
[30] |
J. Ledieu, M. Feuerbacher, C. Thomas, M.C. de Weerd, S. Šturm, M. Podlogar, J. Ghanbaja, S. Migot, M. Sicot, V. Fournée, Acta Mater. 209, 116790 (2021)
DOI URL |
[31] |
L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollár, Surf. Sci. 411, 1 (1998)
DOI URL |
[32] | G. Tréglia, B. Legrand, F. Ducastelle, A. Saúl, C. Gallis, I. Meunier, C. Mottet, A. Senhaji, Comp. Mater. Sci. 15, 2 (1999) |
[33] | L. Li, R.D. Kamachali, Z. Li, Z. Zhang, Phys. Rev. Mater. 4, 053603 (2020) |
[34] |
A.F. Andreoli, J. Orava, P.K. Liaw, H. Weber, M.F. de Oliveira, K. Nielsch, I. Kaban, Materialia 5, 100222 (2019)
DOI URL |
[35] |
G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, E.P. George, Acta Mater. 161, 338 (2018)
DOI URL |
[36] | Y.B. Kang, S.H. Shim, K.H. Lee, S.I. Hong, Mater. Res. Lett. 6, 12 (2018) |
[37] | R. Kirchheim, Acta Mater. 55, 15 (2007) |
[38] |
G. Laplanche, Acta Mater. 199, 193 (2020)
DOI URL |
[39] | Y.Y. Yang, Y.Y. Liu, M.L. Cheng, N.W. Dai, M. Sun, J. Li, Y.M. Jiang, Acta Metall. Sin. -Engl. Lett. 32, 1 (2019) |
[40] | H.Y. Niu, F.F. Cao, K.K. Deng, K.B. Nie, J.W. Kang, H.W. Wang, Acta Metall. Sin. -Engl. Lett. 33, 3 (2020) |
[41] |
J. Dai, H. Feng, H. Li, Z. Jiang, H. Li, S. Zhang, P. Zhou, T. Zhang, Corros. Sci. 174, 108792 (2020)
DOI URL |
[42] |
Z. Wang, Z. Feng, X. Fan, L. Zhang, Corros. Sci. 179, 109146 (2021)
DOI URL |
[43] | M.H. Mosallanejad, S. Sanaei, M. Atapour, B. Niroumand, L. Iuliano, A. Saboori, Acta Metall. Sin. -Engl. Lett. 35, 9 (2022) |
[44] |
K.M. Hsu, S.H. Chen, C.S. Lin, Corros. Sci. 190, 109694 (2021)
DOI URL |
[45] | W.J. Lorenz, F. Mansfeld, Corros. Sci. 21, 9 (1981) |
[46] |
P. Wu, K. Gan, D. Yan, Z. Fu, Z. Li, Corros. Sci. 183, 109341 (2021)
DOI URL |
[47] |
Y.J. Hsu, W.C. Chiang, J.K. Wu, Mater. Chem. Phys. 92, 1 (2005)
DOI URL |
[48] |
J. Yang, J. Wu, C.Y. Zhang, S.D. Zhang, B.J. Yang, W. Emori, J.Q. Wang, J. Alloy. Compd. 819, 152943 (2020)
DOI URL |
[49] |
H. Torbati-Sarraf, M. Shabani, P.D. Jablonski, G.J. Pataky, A. Poursaee, Mater. Des. 184, 108170 (2019)
DOI URL |
[50] | D. Li, D. Chen, J. Wang, H. Chen, Acta Metall. Sin. -Engl. Lett. 23, 6 (2010) |
[51] | J. Fu, K. Cui, F. Li, Y. Wu, Corros. Eng. Sci. Technol. 56, 3 (2021) |
[52] | C. Liu, Y. Gao, K. Chong, F.Q. Guo, D.T. Wu, Y. Z, Forest. J. Alloy. Compd. 935, 168013 (2023) |
[53] | W.W. Chang, Y.Y. Li, H.B. Zheng, H.C. Qian, D.W. Guo, S.Y. Zhang, Y.T. Lou, C.T. Kwok, L.M. Tam, D.W. Zhang, Acta Metall. Sin. -Engl. Lett. 36, 3 (2023) |
[54] |
J. Wang, B. Zhang, B. Wu, X.L. Ma, Corros. Sci. 105, 183 (2016)
DOI URL |
[55] | S.J. Pennycook, Adv. Imag. Elect. Phys. 123, 173 (2002) |
[56] |
E. Merson, V. Poluyanov, P. Myagkikh, D. Merson, A. Vinogradov, Acta Mater. 205, 116570 (2021)
DOI URL |
[57] | X.T. Lian, W.R. Sun, F. Liu, D.D. Zheng, X. Xin, Acta Metall. Sin. -Engl. Lett. 32, 5 (2019) |
[58] | Y.L. Chou, Y.C. Wang, J.W. Yeh, H.C. Shih, Corros. Sci. 52, 10 (2010) |
[59] | M.O. Speidel, R.M. Pedrazzoli, Mater. Perform. 31, 9 (1992) |
[60] |
S. Wong, T. Shun, C. Chang, C. Lee, Mater. Chem. Phys. 210, 146 (2018)
DOI URL |
[61] |
Z.H. Han, W.N. Ren, J. Yang, A. Tian, Y.Z. Du, G. Liu, R. Wei, G.J. Zhang, Y.Q. Chen, J. Alloy. Compd. 816, 152583 (2020)
DOI URL |
[62] |
K.F. Quiambao, S.J. McDonnell, D.K. Schreiber, A.Y. Gerard, K.M. Freedy, P. Lu, J.E. Saal, G.S. Frankel, J.R. Scully, Acta Mater. 164, 362 (2019)
DOI URL |
[63] |
L. Wei, Y. Liu, Q. Li, Y.F. Cheng, Corros. Sci. 146, 44 (2019)
DOI URL |
[64] |
V. Hasannaeimi, S. Mukherjee, J. Electroanal. Chem. 848, 113331 (2019)
DOI URL |
[65] | X.R. Zhu, J. Wang, W.N. Shi, X.B. Liu, X.F. Zhang, H.F. Zhou, Acta Metall. Sin. -Engl. Lett. 35, 9 (2022) |
[66] | K. Zhao, J.H. Liu, M. Yu, S.M. Li, Trans. Nonferr. Metal. Soc. 29, 9 (2019) |
[1] | W.L. Zhang, W. Li, L.B. Fu, X. Peng, J. Sun, S.M. Jiang, J. Gong, C. Sun. Hot Corrosion Behavior of Hf-Doped NiAl Coating in the Mixed Salt of Na2SO4 + K2SO4 at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1409-1420. |
[2] | Xi-Zhao Shi, Zhong-Yu Cui, Jie Li, Bing-Chen Hu, Yi-Qiang An, Xin Wang, Hong-Zhi Cui. Atmospheric Corrosion of AZ31B Magnesium Alloy in the Antarctic Low-Temperature Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1421-1432. |
[3] | Rui Li, Lei Guo, Yu Liu, Qingsong Xu, Qing Peng. Irradiation Resistance of CoCrCuFeNi High Entropy Alloy under Successive Bombardment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1482-1492. |
[4] | Chunquan Liu, Xianhua Chen, Yulong Wu, Yaobo Hu, Wei Zhang, Yusheng Zhang, Jingying Bai, Fusheng Pan. Improved Corrosion Resistance of Ultrafine-Grained Mg-Gd-Zr Alloy Fabricated by Surface Friction Treatment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1281-1291. |
[5] | Long Chen, Xintong Lian, Zhong Xi, Tengshi Liu, Qingxiao Feng, Hualong Li, Yixin Shi, Han Dong. A Study of Rust Layer of Ultra-Thin Cast Strip Steel Containing 0.10% Sb in Simulated Industrial Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1371-1384. |
[6] | Kai Hu, Lei Zhang, Yuanjie Zhang, Bo Song, Shifeng Wen, Qi Liu, Yusheng Shi. Electrochemical Corrosion Behavior and Mechanical Response of Selective Laser Melted Porous Metallic Biomaterials [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1235-1246. |
[7] | Jikui Liu, Junhua Hou, Fengchao An, Bingnan Qian, Christian H. Liebscher, Wenjun Lu. Characterization of Compositionally Complex Hydrides in a Metastable Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1173-1178. |
[8] | Hui Jiang, Li Li, Jianming Wang, Chengbin Wei, Qiang Zhang, Chunjian Su, Huaiming Sui. Wear Properties of Spark Plasma-Sintered AlCoCrFeNi2.1 Eutectic High Entropy Alloy with NbC Additions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 987-998. |
[9] | Zhezhu Lao, Xingpu Zhang, Jiangwei Wang, Jixue Li. Atomistic Evolution of Hf2S/γ′ Interfaces in a Hf-containing Ni-based Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 1038-1046. |
[10] | Xian Zhang, Li Gong, Yanpeng Feng, Zhihui Wang, Miao Yang, Lin Cheng, Jing Liu, Kaiming Wu. Effect of Retained Austenite on Corrosion Behavior of Ultrafine Bainitic Steel in Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 717-731. |
[11] | Jing Li, Xiaochen Zhang, Haibin Ma, Liangyin Xiong, Shi Liu, Qisen Ren, Zhengzheng Pang. Effect of Silicon and Aluminum Addition on Corrosion Behavior of ODS Iron-Based Alloys in Liquid Lead-Bismuth Eutectic [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 732-744. |
[12] | Xin Wei, Yupeng Sun, Junhua Dong, Nan Chen, Qiying Ren, Wei Ke. Effects of Aerobic and Anoxic Conditions on the Corrosion Behavior of NiCu Low Alloy Steel in the Simulated Groundwater Solutions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 745-757. |
[13] | Weiwei Chang, Yangyang Li, Huaibei Zheng, Hongchang Qian, Dawei Guo, Shuyuan Zhang, Yuntian Lou, Chi Tat Kwok, Lap Mou Tam, Dawei Zhang. Microbiologically Influenced Corrosion Behavior of Fe40(CoCrMnNi)60 and Fe60(CoCrMnNi)40 Medium Entropy Alloys in the Presence of Pseudomonas Aeruginosa [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 379-390. |
[14] | Zhu Wang, Guo-Hui Zhang, Yong Yao, Xue-Hua Fan, Jie Jin, Lei Zhang, Yan-Xia Du. Corrosion Behaviour of a Non-equiatomic CoCrFeNiMo High-Entropy Alloy in H2S-Containing and H2S-Free Environments [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 366-378. |
[15] | Xueru Fan, Lei Xie, Qiang Li, Chuntao Chang, Hongxiang Li. Improved Plasticity of Fe25Co25Ni25(Si0.3B0.7)25 High Entropy Bulk Metallic Glass through the Addition of Cu [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 417-425. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||