Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (4): 621-635.DOI: 10.1007/s40195-021-01258-6
Previous Articles Next Articles
Sujie Zhang1, Xiaohua Min1(), Yada Li1, Weiqiang Wang1(
), Ping Li1, Mingjia Li1
Received:
2021-02-17
Revised:
2021-04-21
Accepted:
2021-04-24
Online:
2021-06-07
Published:
2021-06-07
Contact:
Xiaohua Min,Weiqiang Wang
About author:
Weiqiang Wang, wangwq@dlut.edu.cnSujie Zhang, Xiaohua Min, Yada Li, Weiqiang Wang, Ping Li, Mingjia Li. Effects of Deformation and Phase Transformation Microstructures on Springback Behavior and Biocompatibility in β-Type Ti-15Mo Alloy[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 621-635.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Optical micrographs of a R, b RA, c ST, d STA, e STD and f STDA samples of Ti-15Mo alloy and comparison materials of g Ti-15Mo-1Fe and h Ti-6Al-4 V alloys. The α-phase in (a) and (b) and the {332} < 113 > twins in (e) and (f) are indicated in the black arrows. The observed plane is the transverse plane, and the horizontal direction is parallel to RD
Fig. 2 a XRD diffraction profiles and b corresponding lattice parameters of the β-phase for different samples of Ti-15Mo alloy and comparison material of Ti-15Mo-1Fe alloy. The transverse plane is analyzed
Fig. 3 a TEM selected area electron diffraction pattern (SAED) and b dark-field (DF) image for STA sample. Bright and dark areas in (b) are isothermal ω-phase and β-matrix, respectively. The zone axis is parallel to [110]β direction
Fig. 4 EBSD analyses and TEM observations for STD sample: a EBSD inverse pole figure (IPF) map, b {332} < 113 > twin boundaries (red lines) combined with image quality (IQ) map, c KAM map, d TEM bright-field (BF) image and e SAED pattern. The transverse plane is analyzed, and the horizontal direction is parallel to RD. The zone axis is parallel to [01 $\stackrel{\mathrm{-}}{1}$]matrix and [01 $\stackrel{\mathrm{-}}{1}$]twin
Fig. 5 Mechanical properties for different samples of Ti-15Mo alloy and comparison materials of Ti-15Mo-1Fe and Ti-6Al-4 V alloys: a Vickers hardness and b Young's modulus. The transverse plane is analyzed
Fig. 6 a Three-point bending loading - unloading curves with a given deflection of 3 mm for different samples of Ti-15Mo alloy and comparison materials of Ti-15Mo-1Fe and Ti-6Al-4 V alloys, and b schematic of given deflection d and residual deflection (D′) in the loading-unloading curve
Fig. 7 Bending properties for different samples of Ti-15Mo alloy and comparison materials of Ti-15Mo-1Fe and Ti-6Al-4 V alloys: a bending yield strength (σpb0.2) and bending strength at a given deflection of 3 mm (σ3mm), and b springback ratio
Fig. 8 Fluorescence images of hFOB 1.19 cells on the surface of a R, b RA, c ST, d STA, e STD and f STDA samples of Ti-15Mo alloy and comparison materials of g Ti-15Mo-1Fe and h Ti-6Al-4 V alloys after 24 h of incubation. The filopodia is indicated in the white arrow
Fig. 9 SEM images of hFOB 1.19 cells on the surface of a R, b RA, c ST, d STA, e STD and f STDA samples of Ti-15Mo alloy and comparison materials of g Ti-15Mo-1Fe and h Ti-6Al-4 V alloys after 24 h of incubation
Fig. 10 a Cell proliferation on different samples of Ti-15Mo alloy and comparison materials of Ti-15Mo-1Fe and Ti-6Al-4 V alloys after 3 days of incubation, and b distribution of P-value between any two different samples
Fig. 11 a Schematic of the effect of strength and modulus on springback ratio, and b relationship among springback ratio, bending strength and Young's modulus for different samples of Ti-15Mo alloy and comparison materials of Ti-15Mo-1Fe and Ti-6Al-4 V alloys
Fig. 12 Correlations of Young's modulus difference (ΔE) with a lattice parameter of the β-phase difference (Δaβ), and b Vickers hardness difference (ΔHv), between two different samples of Ti-15Mo alloy caused by deformation (blue circle) and phase transformation (red circle) microstructures
[1] |
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54, 397 (2009)
DOI URL |
[2] |
M. Kaur, K. Singh, Mater. Sci. Eng. C 102, 844-62 (2019)
DOI URL |
[3] |
D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Mater. Sci. Eng. A 243, 244 (1998)
DOI URL |
[4] |
D. Banerjee, J.C. Williams, Acta Mater. 61, 844 (2013)
DOI URL |
[5] |
N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, T. Kurniawan, M.H. Ismail, M.H.I. Ibrahim, J. Alloys Compd 701, 698 (2017)
DOI URL |
[6] |
T.P. Flaten, Brain Res. Bull. 55, 187-196 (2001)
PMID |
[7] |
P.G. Laing, A.B. Ferguson, E.S. Hodge, J. Biomed. Mater. Res. 1, 135-149 (1967)
DOI URL |
[8] | M. Long, H.J. Rack, Biomaterials 19(18), 1621-1639 (1998) |
[9] |
J.Y. Rho, T.Y. Tsui, G.M. Pharr, Biomaterials 18, 1325 (1997)
PMID |
[10] |
H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biomaterials 22, 1253 (2001)
PMID |
[11] |
B.B. Jiang, Q. Wang, D.H. Wen, F. Xu, G.Q. Chen, C. Dong, L.X. Sun, P.K. Liaw, Mater. Sci. Eng. A 687, 1 (2017)
DOI URL |
[12] |
J. Vishnu, M. Sankar, H.J. Rack, N. Rao, A.K. Singh, G. Manivasagam, Mater. Sci. Eng. A 779, 139127 (2020)
DOI URL |
[13] | X.H. Min, P.F. Bai, S. Emura, X. Ji, C.Q. Cheng, B.B. Jiang, K. Tsuchiya, Mater. Sci. Eng. A 68, 534 (2017) |
[14] |
S.X. Liang, X.J. Feng, L.X. Yin, X.Y. Liu, M.Z. Ma, R.P. Liu, Mater. Sci. Eng. C 61, 338-343 (2016)
DOI URL |
[15] |
Y.L. Zhou, D.M. Luo, Mater. Charact. 62, 931 (2011)
DOI URL |
[16] |
F.F. Cardoso, P.L. Ferrandini, E.S.N. Lopes, A. Cremasco, R. Caram, J. Mech. Behav. Biomed. Mater. 32, 31 (2014)
DOI PMID |
[17] |
C.C. Chung, S.W. Wang, Y.C. Chen, C.P. Ju, J.H.C. Lin, Mater. Sci. Eng. A 631, 52 (2015)
DOI URL |
[18] |
N.T.C. Oliveira, A.C. Guastaldi, Acta Biomater. 5, 399 (2009)
DOI PMID |
[19] |
K. Wang, Mater. Sci. Eng. A 213, 134-137 (1996)
DOI URL |
[20] |
J.P. Steib, D. Raphaël, D. Mitton, W. Skalli, Spine 29, 193 (2004)
DOI URL |
[21] | J.L. Wang, M.W. Fu, S.Q. Shi, A.M. Korsunsky, Int. J. Mech. Sci. 146-147, 105(2018) |
[22] |
Q.C. Li, X.H. Min, P.F. Bai, W.Q. Wang, X.J. Tao, G.C. Zhong, S.Y. Bai, J. Zhao, Mater. Sci. Eng. C 94, 811 (2019)
DOI URL |
[23] |
S. Hanada, O. Izumi, Metall. Mater. Trans. A 18, 265 (1987)
DOI URL |
[24] |
S. Hanada, N. Masahashi, T.K. Jung, Mater. Sci. Eng. A 588, 403 (2013)
DOI URL |
[25] |
M.J. Lai, C.C. Tasan, D. Raabe, Acta Mater. 111, 173 (2016)
DOI URL |
[26] |
Q. Li, M. Niinomi, J. Hieda, M. Nakai, K. Cho, Acta Biomater. 9, 8027 (2013)
DOI URL |
[27] |
H.H. Liu, M. Niinomi, M. Nakai, K. Cho, Acta Biomater. 24, 361 (2015)
DOI URL |
[28] |
X.H. Min, S. Emura, T. Nishimura, L. Zhang, S. Tamilselvi, K. Tsuchiya, K. Tsuzaki, Mater. Sci. Eng. A 527, 1480 (2010)
DOI URL |
[29] |
B.S. Hickman, J. Mater. Sci. 4, 554 (1969)
DOI URL |
[30] |
X.F. Zhao, M. Niinomi, M. Nakai, J. Hieda, T. Ishimoto, T. Nakano, Acta Biomater. 8, 2392 (2012)
DOI URL |
[31] |
K. Narita, M. Niinomi, M. Nakai, J. Hieda, K. Oribe, Mater. Lett. 86, 178 (2012)
DOI URL |
[32] |
X.H. Min, S. Emura, L. Zhang, K. Tsuzaki, K. Tsuchiya, Mater. Sci. Eng. A 646, 279 (2015)
DOI URL |
[33] |
L. Xiang, X.H. Min, X. Ji, S. Emura, C.Q. Cheng, K. Tsuchiya, Acta Metall. Sin. (Engl. Lett.) 31, 604 (2018)
DOI URL |
[34] |
K. Satendra, T.S.N.S. Narayanan, J. Alloys Compd. 479, 699 (2009)
DOI URL |
[35] |
K. Yao, X.H. Min, S. Emura, K. Tsuchiya, Mater. Sci. Eng. A 766, 138363 (2019)
DOI URL |
[36] |
P. Li, J.Y. Hao, J. Zhao, H.T. Duan, Mater. Sci. Eng. A 527, 7469 (2010)
DOI URL |
[37] |
H.H. Liu, M. Niinomi, M. Nakai, K. Cho, K. Narita, M. Sen, H. Shiku, T. Matsue, Acta Biomater. 12, 352 (2015)
DOI URL |
[38] |
S. Ozan, J.X. Lin, Y.C. Li, R. Ipek, C. Wen, Acta Biomater. 20, 176 (2015)
DOI URL |
[39] |
R.P. Kolli, W.J. Joost, S. Ankem, JOM 67, 1273 (2015)
DOI URL |
[40] |
T. Grosdidier, Y. Combres, E. Gautier, M.J. Philippe, Metall. Mater. Trans. A 31, 1095 (2000)
DOI URL |
[41] |
H. Idrissi, K. Renard, D. Schryvers, P.J. Jacques, Scr. Mater. 63, 961 (2010)
DOI URL |
[42] | W.F. Ho, C.P. Ju, J.H. ChernLin, Biomaterials 20(22), 2115- 21222 (1999) |
[43] |
M.J. Li, X.H. Min, K. Yao, F. Ye, Acta Mater. 164, 322 (2019)
DOI URL |
[44] |
S. Banerjee, U.M. Naik, Acta Mater. 44, 3667 (1996)
DOI URL |
[45] |
S.A. Mantri, D. Choudhuri, T. Alam, V. Ageh, F. Sun, F. Prima, R. Banerjee, Scr. Mater. 130, 69 (2017)
DOI URL |
[46] |
H. Matsumoto, S. Watanabe, S. Hanada, Mater. Sci. Eng. A 448, 39 (2007)
DOI URL |
[47] |
P. Majumdar, S.B. Singh, M. Chakraborty, Mater. Sci. Eng. A 489, 419 (2008)
DOI URL |
[48] |
Y.H. Hon, J.Y. Wang, Y.N. Pan, Mater. Trans. 44, 2384 (2003)
DOI URL |
[49] |
S. Shin, C. Zhang, K.S. Vecchio, Mater. Sci. Eng. A 702, 173 (2017)
DOI URL |
[50] |
A. Panigrahi, M. Bönisch, T. Waitz, E. Schafler, M. Calin, J. Eckert, W. Skrotzki, M. Zehetbauer, J. Alloys Compd. 628, 434 (2015)
DOI URL |
[51] |
P.F. Chui, R. Jing, F.G. Zhang, J.H. Li, T. Feng, J. Alloys Compd. 842, 155693 (2020)
DOI URL |
[52] |
D.J. Lin, J.H. Chern Lin, J.W. Lee, C.P. Ju, H.S. Yin, Biomaterials 28, 2582 (2007)
DOI URL |
[53] |
Y.L. Zhou, D.M. Luo, J. Alloys Compd. 509, 6267 (2011)
DOI URL |
[54] |
Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui, H. Toda, Mater. Sci. Eng. A 398, 28 (2005)
DOI URL |
[55] | M. Geetha, U. Kamachi Mudali, A.K. Gogia, R. Asokamani, B. Raj, Corros Sci 46(4), 877-92 (2004) |
[56] | K. Anselme, Biomaterials 21(7), 667-681 (2000) |
[57] |
W. Xu, X. Lu, L.N. Wang, Z.M. Shi, S.M. Lv, M. Qian, X.H. Qu, J. Mech. Behav. Biomed. Mater. 88, 534 (2018)
DOI PMID |
[1] | Yong Wen, Yan-Fei Wang, Hao Ran, Wei Wei, Jun-Ming Zhang, Chong-Xiang Huang. Improving the Mechanical and Tribological Properties of NiTi Alloys by Combining Cryo-Rolling and Post-Annealing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 317-325. |
[2] | Ying-Xi Li, Fan-Qiang Meng, Rui Yuan, Guo-Qiang Huang, Dong-Bai Sun. Devitrification of Al-Ce Amorphous Ribbon Investigated Using In situ High Energy X-ray Diffraction [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 157-162. |
[3] | Guang Zeng, Shiqian Liu, Qinfen Gu, Zebang Zheng, Hideyuki Yasuda, Stuart D. McDonald, Kazuhiro Nogita. Investigation on the Solidification and Phase Transformation in Pb-Free Solders Using In Situ Synchrotron Radiography and Diffraction: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 49-66. |
[4] | Hui-Hu Lu, Xing-Quan Shen, Wei Liang. Effect of Grain Size on the Precipitation Behaviour in Super-Ferritic Stainless Steels During a Long-Term Ageing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1285-1295. |
[5] | Yi-Shuang Yu, Zhi-Quan Wang, Bin-Bin Wu, Jing-Xiao Zhao, Xue-Lin Wang, Hui Guo, Cheng-Jia Shang. Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 755-764. |
[6] | Ji Zhang, Ling Ren, Ke Yang. Cytotoxicity of Ti-6Al-4V-5Cu Alloy to MC3T3-E1 Cells [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 694-700. |
[7] | Bin-Bin Wu, Zhi-Quan Wang, Cheng-Jia Shang, Yi-Shuang Yu, Devesh Misra. Nucleation Analysis of Variant Transformed from Austenite with Σ3 Boundary in High-Strength Low-Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 523-533. |
[8] | Massab Junaid, Fahd Nawaz Khan, Tauheed Shahbaz, Haris saleem, Julfikar Haider. Influence of Filler on the Microstructure, Mechanical Properties and Residual Stresses in TIG Weldments of Dissimilar Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1395-1406. |
[9] | Min Cheng, Jie Wu, Zheng-Guan Lu, Rui-Peng Guo, Lei Xu, Rui Yang. Effect of Argon-Induced Porosity on Mechanical Properties of Powder Metallurgy Titanium Alloy Components using Hot Isostatic Pressing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1386-1394. |
[10] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[11] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[12] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[13] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[14] | Lei-Lei Xing, Cong-Cong Zhao, Hao Chen, Zhi-Jian Shen, Wei Liu. Microstructure of a Ti-50 wt% Ta alloy produced via laser powder bed fusion [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 981-990. |
[15] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||