Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (11): 1812-1824.DOI: 10.1007/s40195-022-01420-8
Previous Articles Next Articles
Xinbo Ji1, Liming Fu1,2(), Han Zheng1, Jian Wang1, Hengchang Lu3, Wei Wang4, Mao Wen1,2, Han Dong3, Aidang Shan1,2(
)
Received:
2022-02-26
Revised:
2022-03-29
Accepted:
2022-04-04
Online:
2022-11-10
Published:
2022-06-03
Contact:
Liming Fu, lmfu@sjtu.edu.cn; Aidang Shan, adshan@sjtu.edu.cn
Xinbo Ji, Liming Fu, Han Zheng, Jian Wang, Hengchang Lu, Wei Wang, Mao Wen, Han Dong, Aidang Shan. Strengthening of Ultrafine Lamellar-Structured Martensite Steel via Tempering-Induced Nanoprecipitation[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1812-1824.
Add to citation manager EndNote|Ris|BibTeX
C | Si | Mn | Cr | W | V | Nb | Co | Ta | Nd | Fe |
---|---|---|---|---|---|---|---|---|---|---|
0.08 | 0.23 | 0.25 | 11.5 | 3.15 | 0.24 | 0.08 | 2.96 | 0.08 | 0.04 | Bal. |
Table 1 Chemical composition of the martensite steel in this research (wt%)
C | Si | Mn | Cr | W | V | Nb | Co | Ta | Nd | Fe |
---|---|---|---|---|---|---|---|---|---|---|
0.08 | 0.23 | 0.25 | 11.5 | 3.15 | 0.24 | 0.08 | 2.96 | 0.08 | 0.04 | Bal. |
Fig. 1 a CCT diagram of the low-carbon steel calculated by JmatPro-7.0, b schematic diagram of thermomechanical processes. DQ direct quenching, HWR heavy warm rolling, WQ water quenching
Fig. 3 SEM images of DQ, HWR and PT samples: a DQ, b HWR, c PT-300, d PT-400, e PT-700, and f PT-750. g Number density and area fraction of nanoprecipitates as a function of tempering temperature. h EDS analysis of spherical nanoprecipitates at grain boundaries. Abbreviation: PAGB-PA grain boundary, as indicated by white arrows. α′—martensite, red arrows and blue arrows indicate nanoprecipitates distributed in ultra-fine α′ martensite lath and at grain boundaries. White arrows indicate the PAGBs
Samples | Effective grain size (μm) | Precipitates | ||
---|---|---|---|---|
Size (nm) | Number density (μm-2) | Area fraction (%) | ||
DQ | 26.5 | 12.2 ± 5 | 0.09 | 0.05 |
HWR | 0.53 | 10.2 ± 6 | 0.13 | 0.07 |
PT-300 | 0.92 | 12.1 ± 8 | 1.21 | 1.69 |
PT-400 | 1.27 | 18.9 ± 14 | 1.74 | 4.72 |
PT-500 | 1.48 | 53.4 ± 26 | 2.37 | 4.57 |
PT-600 | 1.64 | 119 ± 46 | 3.92 | 6.17 |
PT-700 | 2.13 | 153 ± 56 | 4.44 | 9.77 |
PT-750 | 2.21 | 193 ± 59 | 6.68 | 10.7 |
Table 2 Width of ULS martensite and the evolution of nanoprecipitates via different temperature tempering
Samples | Effective grain size (μm) | Precipitates | ||
---|---|---|---|---|
Size (nm) | Number density (μm-2) | Area fraction (%) | ||
DQ | 26.5 | 12.2 ± 5 | 0.09 | 0.05 |
HWR | 0.53 | 10.2 ± 6 | 0.13 | 0.07 |
PT-300 | 0.92 | 12.1 ± 8 | 1.21 | 1.69 |
PT-400 | 1.27 | 18.9 ± 14 | 1.74 | 4.72 |
PT-500 | 1.48 | 53.4 ± 26 | 2.37 | 4.57 |
PT-600 | 1.64 | 119 ± 46 | 3.92 | 6.17 |
PT-700 | 2.13 | 153 ± 56 | 4.44 | 9.77 |
PT-750 | 2.21 | 193 ± 59 | 6.68 | 10.7 |
Fig. 4 BF TEM micrographs showing a the ultra-fine α′ martensite lath after HWR, b ultra-fine α′ martensite laths parallel to RD, with insets showing a magnified ultra-fine α′ martensite lath and corresponding SAED pattern. Abbreviation: PAGB-PA grain boundary, as indicated by white arrows. α′—martensite
Fig. 5 Microstructures of PT-400. a BF TEM micrograph. b BF TEM images of magnified ultra-fine α′ martensite lath displaying the spherical and needle-like nanoprecipitates around dislocations. Orange dotted lines outline the PAGBs. c Magnified ultra-fine α′ martensite lath displaying tons of nanoprecipitates dispersed in ultra-fine α′ martensite laths and EDS images showing Cr distribution in (c) and Fe, W, Ta and C distributions in the region outlined by the red dotted square. Abbreviation: PAGB-PA grain boundary, as indicated by white arrows. α′—martensite
Fig. 6 a HRTEM image taken from Fig. 5b displaying numerous nanoprecipitates formed in a ultra-fine α′ martensite lath, whose size is less than 10 nm. b-d FFT patterns of nanoprecipitates taken from the ultra-fine α′ martensite lath in (a)
Processing state | Integrated intensity | FWHM | Lattice Strain \(\left\langle {e^{2} } \right\rangle\) (%) | Dislocation density (1015 m-2) | Lattice parameter (Å) | ||||
---|---|---|---|---|---|---|---|---|---|
(110) | (200) | (211) | (220) | (211) | (110) | ||||
Standard PDF card 04- | 100 | 20.0 | 30.0 | 10.0 | |||||
DQ | 100 | 17.6 | 33.8 | 8.1 | 0.706 | 0.399 | 3.64 | 0.986 | 2.8782 |
HWR | 100 | 9.0 | 24.8 | 9.9 | 0.504 | 0.287 | 5.31 | 3.316 | 2.8679 |
PT-300 | 100 | 2.6 | 12.3 | 8.4 | 0.865 | 0.429 | 3.76 | 1.873 | 2.8664 |
PT-400 | 100 | 4.6 | 15.8 | 16.9 | 0.794 | 0.436 | 3.28 | 1.116 | 2.8656 |
PT-500 | 100 | 4.5 | 17.8 | 12.8 | 0.772 | 0.405 | 3.46 | 0.927 | 2.8634 |
PT-600 | 100 | 2.9 | 13.0 | 8.8 | 0.728 | 0.375 | 2.39 | 0.689 | 2.8621 |
PT-700 | 100 | 8.4 | 28.2 | 14.1 | 0.640 | 0.314 | 1.72 | 0.585 | 2.8579 |
PT-750 | 100 | 6.0 | 24.8 | 9.7 | 0.529 | 0.301 | 0.61 | 0.429 | 2.8568 |
Table 3 Integrated intensity ratio and FWHM of diffraction peaks of samples with different temperature tempering
Processing state | Integrated intensity | FWHM | Lattice Strain \(\left\langle {e^{2} } \right\rangle\) (%) | Dislocation density (1015 m-2) | Lattice parameter (Å) | ||||
---|---|---|---|---|---|---|---|---|---|
(110) | (200) | (211) | (220) | (211) | (110) | ||||
Standard PDF card 04- | 100 | 20.0 | 30.0 | 10.0 | |||||
DQ | 100 | 17.6 | 33.8 | 8.1 | 0.706 | 0.399 | 3.64 | 0.986 | 2.8782 |
HWR | 100 | 9.0 | 24.8 | 9.9 | 0.504 | 0.287 | 5.31 | 3.316 | 2.8679 |
PT-300 | 100 | 2.6 | 12.3 | 8.4 | 0.865 | 0.429 | 3.76 | 1.873 | 2.8664 |
PT-400 | 100 | 4.6 | 15.8 | 16.9 | 0.794 | 0.436 | 3.28 | 1.116 | 2.8656 |
PT-500 | 100 | 4.5 | 17.8 | 12.8 | 0.772 | 0.405 | 3.46 | 0.927 | 2.8634 |
PT-600 | 100 | 2.9 | 13.0 | 8.8 | 0.728 | 0.375 | 2.39 | 0.689 | 2.8621 |
PT-700 | 100 | 8.4 | 28.2 | 14.1 | 0.640 | 0.314 | 1.72 | 0.585 | 2.8579 |
PT-750 | 100 | 6.0 | 24.8 | 9.7 | 0.529 | 0.301 | 0.61 | 0.429 | 2.8568 |
Samples | Calculated strengthening contribution | σcal | σexp | |||
---|---|---|---|---|---|---|
σgr | σp | σds | σ0 | |||
HWR | ~ 650 | - | ~ 718 | ~ 54 | ~ 1422 | 1343 |
PT-400 | ~ 610 | ~ 443 | ~ 417 | ~ 38 | ~ 1508 | 1805 |
PT-700 | ~ 580 | ~ 124 | ~ 301 | ~ 19 | ~ 1024 | 1060 |
Table 4 Calculated contributions of each strengthening mechanism in HWR and PT samples and the experimental yield stress
Samples | Calculated strengthening contribution | σcal | σexp | |||
---|---|---|---|---|---|---|
σgr | σp | σds | σ0 | |||
HWR | ~ 650 | - | ~ 718 | ~ 54 | ~ 1422 | 1343 |
PT-400 | ~ 610 | ~ 443 | ~ 417 | ~ 38 | ~ 1508 | 1805 |
PT-700 | ~ 580 | ~ 124 | ~ 301 | ~ 19 | ~ 1024 | 1060 |
Fig. 7 Phase images of the HWR and PT-400 and PT-700 samples in a, b, c, respectively. KAM images of the HWR and PT-400 and PT-700 samples in d, e, f, respectively. HAGB high-angle grain boundary
Fig. 8 a Typical tensile engineering stress-strain and b true stress-strain curves of the DQ, HWR and PT samples tempered at 300-750 °C for 1 h and tested at a strain rate of 10-4 s-1 at room temperature. c σts, σy and ε of the HWR and PT samples as a function of tempering temperature. d Microhardness of the DQ, HWR and PT samples as a function of tempering temperature
[1] |
X.B. Ji, L.M. Fu, H. Zheng, J. Peng, W. Wang, A.D. Shan, Mater. Sci. Eng. A 826, 141977 (2021)
DOI URL |
[2] | H. Beladi, I.B. Timokhina, S. Mukherjee, P.D. Hodgson, J. Iron Steel Res. Int. 59, 218 (2011) |
[3] |
M.H. Cai, S.S. Dhinwal, Q.H. Han, Q. Chao, P.H. Hodgson, Mater. Sci. Eng. A 583, 205 (2013)
DOI URL |
[4] |
R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock, Mater. Sci. Eng. A 441, 1 (2006)
DOI URL |
[5] |
R.Z. Valiev, Y.V. Lvanisenko, E.F. Rauch, B. Baudelet, Acta Mater. 44, 4705 (1996)
DOI URL |
[6] |
H.S. Dong, I. Kim, J. Kim, K.T. Park, Acta Mater. 49, 1285 (2001)
DOI URL |
[7] |
D.H. Shin, B.C. Kim, K.T. Park, W.Y. Chaoo, Acta Mater. 48, 3245 (2000)
DOI URL |
[8] |
B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357,1029 (2017)
DOI PMID |
[9] | Z. Han, L.M. Fu, Z.Y. Li, X.B. Ji, Q.J. Wang, W. Wang, A.D. Shan, Mater. Today Commun. 21, 100646 (2019) |
[10] |
N. Tsuchida, H. Nakano, T. Okamoto, T. Inoue, Mater. Sci. Eng. A 626, 441 (2015)
DOI URL |
[11] |
X.M. Guo, S.C. Liu, J.J. Xu, S. Wang, L.M. Fu, Z. Chai, H. Lu, Mater. Sci. Eng. A 824, 141827 (2021)
DOI URL |
[12] |
A.G. Kalashami, A. Kermanpur, A. Najafizadeh, Y. Mazaheri, Mater. Sci. Eng. A 658, 355 (2016)
DOI URL |
[13] |
H.W. Luo, X.H. Wang, Z.B. Liu, Z.Y. Yang, J. Mater. Sci. Technol. 51, 130 (2020)
DOI URL |
[14] |
M.X. Yang, Y. Pan, F.P. Yuan, Y.T. Zhu, X.L. Wu, Mater. Res. Lett. 4, 145 (2016)
DOI URL |
[15] |
H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, Y. Minamino, Mater. Charact. 54, 378 (2005)
DOI URL |
[16] |
Z.Y. Li, L.M. Fu, J. Peng, H. Zheng, X.B. Ji, Y.L. Sun, S. Ma, A.D. Shan, Mater. Charact. 159, 109989 (2020)
DOI URL |
[17] |
S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, M.J. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M.W. Chen, Y.D. Wang, Z.P. Lu, Nature 544,460 (2017)
DOI URL |
[18] |
Z. Shang, J. Ding, C. Fan, M. Song, J. Li, Q. Li, S. Xue, K.T. Hurtwig, X. Zhang, Acta Mater. 169, 209 (2019)
DOI |
[19] |
A.R. Cox, P. Jones, J. Mater. Sci. 4, 890 (1969)
DOI URL |
[20] | M. Calcagnotto, D. Ponge, D. Raabe, ISIJ Int. 48, 1069 (2008) |
[21] |
M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59, 658 (2011)
DOI URL |
[22] |
L.F. Lv, L.M. Fu, S. Ahmad, A.D. Shan, Mater. Sci. Eng. A 704, 469 (2017)
DOI URL |
[23] |
H.L. Zhang, M.Y. Sun, Y.X. Liu, D.P. Ma, B. Xu, M.X. Huang, D.Z. Li, Y.Y. Li, Acta Mater. 211, 116878 (2021)
DOI URL |
[24] | Z.W. Wang, W.J. Lu, H. Zhao, C.H. Liebscher, J.Y. He, D. Ponge, D. Raabe, Z.M. Li, Sci. Adv. 6, 9543 (2020) |
[25] |
M.C. Niu, L.C. Yin, K. Yang, J.H. Luan, W. Wang, Z.B. Jiao, Acta Mater. 209, 116788 (2021)
DOI URL |
[26] |
B.B. Zhang, F.K. Yan, M.J. Zhao, N.R. Tao, K. Lu, Acta Mater. 151, 310 (2018)
DOI URL |
[27] |
S.S. Xu, Y. Zhao, D. Chen, L.W. Sun, Z.W. Zhang, Int. J. Plast. 113, 99 (2018)
DOI URL |
[28] |
H. Beladi, L.B. Timokhina, S. Mukherjee, P.D. Hodgson, Acta Mater. 59, 4186 (2011)
DOI URL |
[29] |
Y. Adachi, M. Wakita, H. Beladi, P.D. Hodgsom, Acta Mater. 55, 4925 (2007)
DOI URL |
[30] |
H. Gleiter, Acta Mater. 48, 1 (2000)
DOI URL |
[31] |
M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, D. Raabe, Acta Mater. 79, 268 (2014)
DOI URL |
[32] |
R. Song, D. Ponge, D. Raabe, R. Kaspar, Acta Mater. 53, 845 (2005)
DOI URL |
[33] | H. Zheng, L.M. Fu, X.B. Ji, Z.Y. Li, Y.L. Sun, S.X. Zhao, W. Wang, A.D. Shan, Acta Merall. Sin. Engl. Lett. 33, 1645 (2020) |
[34] |
S.Z. Li, Z. Eliniyaz, L.T. Zhang, F. Sun, Y.Z. Shen, A.D. Shan, Mater. Charact. 73, 144 (2012)
DOI URL |
[35] | L. Alexander, Elbert, X-Ray Spectrometry, 2nd edn. (Springer, New York, 1974), p. 960 |
[36] |
Y.H. Zhao, H.W. Sheng, K. Lui, Acta Mater. 49, 365 (2001)
DOI URL |
[37] |
D. Raynor, J.M. Silcock, Met. Sci. J. 4, 121 (1970)
DOI URL |
[38] |
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010)
DOI URL |
[39] | J. Sun, Y.T. Zhang, P. Wang, Z.F. Ye, D.Z. Li, Acta Metall. Sin. Engl. Lett. 27, 573 (2014) |
[40] | E. Abbasi, Q. Luo, D. Owens, Acta Metall. Sin. Engl. Lett. 32, 74 (2019) |
[41] |
Y. Wang, J. Sun, T. Jiang, Y. Sun, S. Guo, Y. Liu, Acta Mater. 158, 247 (2018)
DOI URL |
[42] |
J.J. Sun, Y.N. Liu, Y.T. Zhu, F.L. Lian, H.J. Liu, T. Jiang, S.W. Guo, W.Q. Liu, X.B. Ren, Sci. Rep. 7, 6956 (2017)
DOI URL |
[43] |
J. Hu, L.X. Du, H. Xie, P. Yu, R.D.K. Misra, Mater. Sci. Eng. A 605, 186 (2014)
DOI URL |
[44] | F. Abe, Struct. Alloys Power Plants 9, 250 (2014) |
[45] |
K. Maruyama, K. Sawada, J.I. Koike, ISIJ Int. 41, 641 (2001)
DOI URL |
[46] | L. Zhang, W. Wang, M.B. Shahzad, Y.Y. Shan, K. Yang, Acta Metall. Sin. Engl. Lett. 32, 1161 (2019) |
[47] | T. Gladman, Met. Sci. J. 15, 30 (1999) |
[48] | M.A. Meyers, K.K. Chawla, Mater. Today 8, 83 (2005) |
[49] |
D.N. Seidman, E.A. Marquis, D.C. Dunand, Acta Mater. 50, 4021 (2002)
DOI URL |
[50] | H. Ashrafi, M. Shamanian, R. Emadi, E. Ghassemali, Acta Metall. Sin. Engl. Lett. 33, 299 (2020) |
[51] | Y.G. Deng, H.S. Di, J.C. Zhang, Acta Metall. Sin. Engl. Lett. 28, 1141 (2015) |
[52] | P.F. Gao, W.J. Chen, F. Li, B.J. Ning, Z.Z. Zhao, Acta Metall. Sin. Engl. Lett. 33, 1657 (2020) |
[53] | G. Krauss, Mater. Sci. Eng. A 273, 40 (1999) |
[1] | Jian-Yu Li, Shi-Ning Kong, Chi-Kun Liu, Bin-Bin Wang, Zhao Zhang. Chemical Composition Effect on Microstructures and Mechanical Properties in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1494-1508. |
[2] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Shao-Ke Yao, Jing-Yu Hou. Effect of Annealing Temperature and Strain Rate on Mechanical Property of a Selective Laser Melted 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 773-789. |
[3] | Minbo Wang, Ruidi Li, Tiechui Yuan, Haiou Yang, Pengda Niu, Chao Chen. Microstructure and Mechanical Properties of Selective Laser Melted Al-2.51Mn-2.71Mg-0.55Sc-0.29Cu-0.31Zn Alloy Designed by Supersaturated Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 354-368. |
[4] | Shuaishuai Wei, Bo Song, Yuanjie Zhang, Lei Zhang, Yusheng Shi. Mechanical Response of Triply Periodic Minimal Surface Structures Manufactured by Selective Laser Melting with Composite Materials [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 397-410. |
[5] | Rong Xu, Ruidi Li, Tiechui Yuan, Hongbin Zhu, Ping Li. Microstructure and Mechanical Properties of TiC-Reinforced Al-Mg-Sc-Zr Composites Additively Manufactured by Laser Direct Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 411-424. |
[6] | Yunpeng Zeng, Wei Yan, Xianbo Shi, Maocheng Yan, Yiyin Shan, Ke Yang. Enhanced Bio-corrosion Resistance by Cu Alloying in a Micro-alloyed Pipeline Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1731-1743. |
[7] | Jiahe Mei, Ying Han, Guoqing Zu, Weiwei Zhu, Yu Zhao, Hua Chen, Xu Ran. Achieving Superior Strength and Ductility of AlSi10Mg Alloy Fabricated by Selective Laser Melting with Large Laser Power and High Scanning Speed [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1665-1672. |
[8] | Zhen Lu, Chengcai Zhang, Nana Deng, Haiping Zhou, Ruirui Fang, Kuidong Gao, Yukuo Su, Hongbin Zhang. Influence of Selective Laser Melting Process Parameters on Microstructure and Properties of a Typical Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1673-1687. |
[9] | Muhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212. |
[10] | Wei Zhang, Zhi-Hong Dong, Hong-Wei Kang, Chen Yang, Yu-Jiang Xie, Mohamad Ebrahimnia, Xiao Peng. Enhancement of Strength-Ductility Balance of the Laser Melting Deposited 12CrNi2 Alloy Steel Via Multi-step Quenching Treatment [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1234-1244. |
[11] | Jian Han, Jun Wang, Sunusi Marwana Manladan, Yangchuan Cai, Qian Wang, Zhixiong Zhu, Lisong Zhu, Lianzhong Lu, Zhengyi Jiang. Effect of Lüders Bands by Strain Ageing on Strain Distribution, Microstructure and Texture Evolution of High-Strength Pipe Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 657-667. |
[12] | Xiaohui Xi, Jinliang Wang, Liqing Chen, Zhaodong Wang. On the Microstructural Strengthening and Toughening of Heat-Affected Zone in a Low-Carbon High-Strength Cu-Bearing Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 617-627. |
[13] | Xiangpeng Gong, Shifang Luo, Shiyong Li, Cuilan Wu. Dislocation-Induced Precipitation and Its Strengthening of Al-Cu-Li-Mg Alloys with High Mg [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 597-605. |
[14] | Jun-Xiu Chen, Xiang-Ying Zhu, Li-Li Tan, Ke Yang, Xu-Ping Su. Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg-2Zn-xGd-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 205-216. |
[15] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||