Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (4): 543-554.DOI: 10.1007/s40195-020-01134-9
Previous Articles Next Articles
Long Xin1, Yongming Han1, Ligong Ling1,2, Yonghao Lu1(), Tetsuo Shoji1,3
Received:
2020-05-30
Revised:
2020-06-28
Accepted:
2020-06-29
Online:
2021-04-10
Published:
2021-03-30
Contact:
Yonghao Lu
About author:
Yonghao Lu, lu_yonghao@mater.ustb.edu.cnLong Xin, Yongming Han, Ligong Ling, Yonghao Lu, Tetsuo Shoji. Surface Oxidation and Subsurface Microstructure Evolution of Alloy 690TT Induced by Partial Slip Fretting Corrosion in High-Temperature Pure Water[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 543-554.
Add to citation manager EndNote|Ris|BibTeX
Specimen | Ni | Fe | Cr | C | Ti | Mn | Si | P | S |
---|---|---|---|---|---|---|---|---|---|
Alloy 690TT | Bal. | 11.6 | 29.9 | 0.025 | 0.33 | 0.25 | 0.33 | 0.086 | 0.0025 |
Type 304SS | 9.35 | Bal. | 18.3 | 0.018 | - | 1.31 | 0.31 | 0.034 | 0.0025 |
Table 1 Chemical compositions of alloys (wt %)
Specimen | Ni | Fe | Cr | C | Ti | Mn | Si | P | S |
---|---|---|---|---|---|---|---|---|---|
Alloy 690TT | Bal. | 11.6 | 29.9 | 0.025 | 0.33 | 0.25 | 0.33 | 0.086 | 0.0025 |
Type 304SS | 9.35 | Bal. | 18.3 | 0.018 | - | 1.31 | 0.31 | 0.034 | 0.0025 |
Normal load | Displacement amplitude | Frequency | Duration time | Temperature | Pressure | PH | DO |
---|---|---|---|---|---|---|---|
100 N | 60 μm | 30 Hz | 2 h | 288 °C | 8.3 MPa | 5.6 | 2 ppm (by weight) |
Table 2 Fretting test conditions and water chemistry parameters
Normal load | Displacement amplitude | Frequency | Duration time | Temperature | Pressure | PH | DO |
---|---|---|---|---|---|---|---|
100 N | 60 μm | 30 Hz | 2 h | 288 °C | 8.3 MPa | 5.6 | 2 ppm (by weight) |
Fig. 2 a LSCM morphology of wear scar on Alloy 690TT after fretting corrosion in HTHP water, b cross-sectional profile of the wear scar with the value of measured wear volume, c EPMA-line scanning analysis for the oxygen concentration on worn surface
Fig. 3 a Magnified SEM morphology of central sticking region of wear scar on Alloy 690TT and b corresponding Raman analysis of the oxide film in the red circle in a
Oxides | Kim et al. [ | Kim et al. [ | Maslar et al. [ | Wang et al. [ | Xiao et al. [ | Miyazawa et al. [ | Mstsuda et al. [ |
---|---|---|---|---|---|---|---|
NiO | 1074 | ||||||
910 | |||||||
725 | |||||||
480 | 532 | 490 | |||||
Cr2O3 | 608 | 610 | 613 | ||||
550 | 550 | 552 | |||||
528 | 527 | ||||||
347 | 352 | 350 | |||||
302 | 302 | 300 | |||||
NiFe2O4 | 695 | 702 | 705 | ||||
650 | 654 | 655 | |||||
595 | 592 | ||||||
565 | 574 | 570 | |||||
488 | 492 | 488 | |||||
455 | 460 | 457 | |||||
325 | |||||||
NiCr2O4 | 796 | ||||||
665 | 687 | 686 | 686 | ||||
580 | |||||||
549 | 550-560 | ||||||
508 | 513 | 512 | 511 | ||||
425 | 429 | 425 | |||||
325 | |||||||
181 | |||||||
FeCr2O4 | 683 | 681 | |||||
590 | 600 | ||||||
492 | |||||||
Fe3O4 | 665 | 661 | |||||
524 | 532 | ||||||
292 | 300 | ||||||
Fe2O3 | 1310 | 1320 | |||||
1100 | |||||||
1055 | |||||||
813 | |||||||
655 | |||||||
607 | 613 | ||||||
494 | 498 | ||||||
406 | 412 | ||||||
290 | 293 | ||||||
243 | 247 | ||||||
224 | 225 |
Table 3 Wavenumber corresponding to the typical oxides for Ni-Fe-Cr alloys in Raman spectra
Oxides | Kim et al. [ | Kim et al. [ | Maslar et al. [ | Wang et al. [ | Xiao et al. [ | Miyazawa et al. [ | Mstsuda et al. [ |
---|---|---|---|---|---|---|---|
NiO | 1074 | ||||||
910 | |||||||
725 | |||||||
480 | 532 | 490 | |||||
Cr2O3 | 608 | 610 | 613 | ||||
550 | 550 | 552 | |||||
528 | 527 | ||||||
347 | 352 | 350 | |||||
302 | 302 | 300 | |||||
NiFe2O4 | 695 | 702 | 705 | ||||
650 | 654 | 655 | |||||
595 | 592 | ||||||
565 | 574 | 570 | |||||
488 | 492 | 488 | |||||
455 | 460 | 457 | |||||
325 | |||||||
NiCr2O4 | 796 | ||||||
665 | 687 | 686 | 686 | ||||
580 | |||||||
549 | 550-560 | ||||||
508 | 513 | 512 | 511 | ||||
425 | 429 | 425 | |||||
325 | |||||||
181 | |||||||
FeCr2O4 | 683 | 681 | |||||
590 | 600 | ||||||
492 | |||||||
Fe3O4 | 665 | 661 | |||||
524 | 532 | ||||||
292 | 300 | ||||||
Fe2O3 | 1310 | 1320 | |||||
1100 | |||||||
1055 | |||||||
813 | |||||||
655 | |||||||
607 | 613 | ||||||
494 | 498 | ||||||
406 | 412 | ||||||
290 | 293 | ||||||
243 | 247 | ||||||
224 | 225 |
Fig. 4 a Typical SEM-SE2 morphology of microslip region of wear scar in Alloy 690TT, (b) magnified SEM-InLence morphology taken from the rectangle in a, c typical SEM-InLence morphology showing the oxide distribution
Fig. 6 Raman analysis for the selected worn surface of Alloy 690TT after fretting corrosion in HTHP water: a LSCM image showing five locations for Raman test, b indexed Raman spectra of these five tests
Fig. 7 SEM images of microslip region on Alloy 690TT after fretting corrosion in HTHP water showing a the area chosen for extraction by FIB lift-out and b the deposited Pt coating on the selected site. TEM results for c BFTEM image of the cross section extracted using a FIB, d corresponding STEM-HAADF image
Fig. 8 a BFTEM image obtained from the rectangle 1 marked in Fig. 7c with the inserted SAED, b STEM-HAADF image of the rectangle region 2 in Fig. 7d and the corresponding EDS elemental mapping of Fe, Ni, Cr and O and quantified EDS results on c point 1 and d point 2 marked in b
Fig. 9 a BFTEM image obtained from the rectangle 3 marked in Fig. 7c, b, c SAED patterns from locations 1 and 2 in a, respectively, d, e corresponding DFTEM images obtained from different diffraction spots in c, respectively, f measured distribution of grain size in oxide layer
Fig. 10 a STEM-HAADF image of the rectangle 4 marked in Fig. 7d, b-f corresponding EDX elemental mappings of Fe, Ni, Pt, Cr and O and g EDX profiles for line scan across the wear debris layer. The arrow in a indicates the location and direction of the composition measurements
[1] | S.J. Zinkle, G.S. Was, Acta Mater. 61 735 (2013) |
[2] | J. Gao, F.R. Wan, G. Cao, K. Sridharan, T.M. Allen, Acta Metall. Sin. Engl. Lett. 29 774 (2016) |
[3] | D. Scott, Metall. Rev. 18 88 (1973) |
[4] | Z.D. Fan, J.S. Du, Z.B. Zhang, Y.C. Ma, S.Y. Cao, K. Niu, C.X. Liu, Eng. Fail. Anal. 96 340 (2019) |
[5] | P.L. Ko, Tribol. Int. 20 66 (1987) |
[6] | X.C. Liu, H.L. Ming, Z.M. Zhang, J.Q. Wang, L.C. Tang, H. Qian, Y.C. Xie, E.H. Han, Acta Metall. Sin. Engl. Lett. 32 1437 (2019) |
[7] | X.L. Guo, P. Lai, L. Li, L.C. Tang, L.F. Zhang, Ann. Nucl. Energy 144 107556 (2020) |
[8] | L. Xin, Y.H. Lu, T. Shoji, Mater. Charact. 131 157 (2017) |
[9] | J.Y. Yun, H.S. Lee, D.H. Hur, W.S. Kang, C.H. Bae, S.J. Kim, Wear 368-369, 344 (2016) |
[10] | F.H. Stott, Tribol. Int. 31 61 (1998) |
[11] | L. Xin, B.B. Yang, J. Li, Y.H. Lu, T. Shoji, Wear 390, 71 (2017) |
[12] | H.L. Ming, X.C. Liu, Z.M. Zhang, J.Q. Wang, E.H. Han, Tribol. Int. 126 133 (2018) |
[13] | X.L. Guo, P. Lai, L.C. Tang, J.M. Wang, L.F. Zhang, Tribol. Int. 116 155 (2017) |
[14] | P. Lai, X.C. Gao, L.C. Tang, X.L. Guo, L.F. Zhang, Nucl. Eng. Des. 327 51 (2018) |
[15] | L. Xin, B.B. Yang, Z.H. Wang, J. Li, Y.H. Lu, T. Shoji, Wear 368-369, 210 (2016) |
[16] |
L. Xin, X. Liang, Y.M. Han, Y.H. Lu, T. Shoji, Tribol. Int. 134 93 (2019)
DOI URL |
[17] | Z.H. Wang, J. Xu, J. Li, L. Xin, Y. Lu, T. Shoji, Y. Takeda, Y. Otsuka, Y. Mutoh, T. Nucl. Mater. 502 255 (2018) |
[18] |
L. Xin, H.J. Luo, J.L. Han, Y.H. Lu, T. Shoji, Mater. Charact. 132 284 (2017)
DOI URL |
[19] | Z.R. Zhou, E. Sauger, J.J. Liu, L. Vincent, Wear 212, 50 (1997) |
[20] | E. Sauger, L. Ponsonnet, J.M. Martin, L. Vincent, Tribol. Int. 33 743 (2000) |
[21] | L. Xin, B.B. Yang, Z.H. Wang, J. Li, Y.H. Lu, T. Shoji, Mater. Des. 104 152 (2016) |
[22] | E. Sauger, S. Fouvry, L. Ponsonnet, P. Kapsa, J.M. Martin, L. Vincent, Wear 245, 39 (2000) |
[23] |
J. Kim, K.J. Choi, C.B. Bahn, J.H. Kim, J. Nucl. Mater. 449 181 (2014)
DOI URL |
[24] | J.H. Kim, I.S. Hwang, Nucl. Eng. Des. Des. 235 1029 (2005) |
[25] | J.E. Maslar, W.S. Hurst, W.J. Bowers, J.H. Hendricks, M.I. Aquino, J. Electrochem. Soc. 147 2532 (2000) |
[26] |
J.E. Maslar, W.S. Hurst, W.J. Bowers, J.H. Hendricks, M.I. Aquino, I. Levin, Appl. Surf. Sci. 180 102 (2001)
DOI URL |
[27] | J.E. Maslar, W.S. Hurst, J.H. Hendricks, M.I. Aquino, W.J.B. Jr, Corrosion 58, 739 (2002) |
[28] | Z. Wang, S. Saxena, P. Lazor, H. O’Neill, J. Phys. Chem. Solids 64 425 (2003) |
[29] | T.T. Xiao, C.L. Yang, Y.G. Lu, F.L. Zeng, J. Mater. Sci. Mater. Electron. 25 3364 (2014) |
[30] |
T. Miyazawa, S. Uchida, T. Satoh, Y. Morishima, T. Hirose, Y. Satoh, K. Iinuma, Y. Wada, H. Hosokawa, N. Usui, J. Nucl. Sci. Technol. 42 233 (2005)
DOI URL |
[31] |
Y. Matsuda, S. Hinotani, K. Yamanaka, Tetsu-to-Hagane 79, 48 (1992)
DOI URL |
[32] |
L. Xin, Z.H. Wang, J. Li, Y.H. Lu, T. Shoji, Tribol. Trans. 60 913 (2017)
DOI URL |
[33] | R.B. Waterhouse (ed.), Fretting Corrosion ( Pergamon Press, Oxford, 1972) |
[34] | W.J. Kuang, X.Q. Wu, E.H. Han, J.C. Rao, Corros. Sci. 53 3853 (2011) |
[35] | L. Xin, B.B. Yang, J. Li, Y.H. Lu, T. Shoji, Corros. Sci. 123 116 (2017) |
[36] |
N.S. Mcintyre, D.G. Zetaruk, D. Owen, Appl. Surf. Sci. 2 55 (1978)
DOI URL |
[37] | Y. Zhang, X.Y. Yin, J.Z. Wang, F.Y. Yan, Corros. Sci. 88 423 (2014) |
[38] | M. Lgried, T. Liskiewicz, A. Neville, Wear 282, 52 (2012) |
[39] | Y. Zhang, X.Y. Yin, F.Y. Yan, Mater. Chem. Phys. 379 273 (2016) |
[40] | H.L. Du, P.K. Datta, I. Inman, R. Geurts, C. Kübel, Mater. Sci. Eng. A. 357 412 (2003) |
[41] |
Y.J. Kim, Corrosion 56, 389 (2000)
DOI URL |
[42] |
X. Chen, Z. Han, K. Lu, Scr. Mater. 101 76 (2015)
DOI URL |
[43] |
F. Ren, S.N. Arshad, P. Bellon, R.S. Averback, M. Pouryazdan, H. Hahn, Acta Mater. 72 148 (2014)
DOI URL |
[44] |
X.C. Liu, H.W. Zhang, K. Lu, Science 342, 337 (2013)
DOI URL |
[45] |
S. Descartes, M. Busquet, Y. Berthier, Wear 271, 1833 (2011)
DOI URL |
[46] |
K. Huang, R.E. Logé, Mater. Des. 111 548 (2016)
DOI URL |
[1] | Li-Li Zhang, Jie Song, Sajjad Ur Rehman, Jia-Jie Li, Lei Wang, Mu-Nan Yang, Ren-Hui Liu, Qing-Zheng Jiang, Zhen-Chen Zhong. Uneven Evolution of Microstructure, Magnetic Properties and Coercivity Mechanism of Mo-Substituted Nd-Ce-Fe-B Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 590-596. |
[2] | Chenliang Chu, Weiping Chen, Zhen Chen, Zhenfei Jiang, Hao Wang, Zhiqiang Fu. Microstructure and Mechanical Behavior of FeNiCoCr and FeNiCoCrMn High-Entropy Alloys Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 445-454. |
[3] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. |
[4] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[5] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[6] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[7] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[8] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[9] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[10] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[11] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[12] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[13] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[14] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[15] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||