Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (7): 837-846.DOI: 10.1007/s40195-015-0267-z
• Orginal Article • Previous Articles Next Articles
Sunkulp Goel1, R. Jayaganthan1(), I. V. Singh2, D. Srivastava3, G. K. Dey3, N. Saibaba4
Received:
2014-11-02
Revised:
2015-03-03
Online:
2015-04-08
Published:
2015-07-23
Sunkulp Goel, R. Jayaganthan, I. V. Singh, D. Srivastava, G. K. Dey, N. Saibaba. Texture Evolution and Ultrafine Grain Formation in Cross-Cryo-Rolled Zircaloy-2[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(7): 837-846.
Add to citation manager EndNote|Ris|BibTeX
Element | Tin (Sn) | Iron (Fe) | Chromium (Cr) | Nickel (Ni) | Nitrogen (N) |
---|---|---|---|---|---|
Wt | 1.3-1.6 | 0.07-0.20 | 0.05-0.16 | 0.03-0.08 | 0.006 |
Table 1 Chemical composition of Zircaloy-2
Element | Tin (Sn) | Iron (Fe) | Chromium (Cr) | Nickel (Ni) | Nitrogen (N) |
---|---|---|---|---|---|
Wt | 1.3-1.6 | 0.07-0.20 | 0.05-0.16 | 0.03-0.08 | 0.006 |
Fig. 3 TEM images of cryo-cross-rolled (CCR) and room-temperature cross-rolled (RTCR) zircaloy-2 after annealing at 400 °C for 30 min: a 25% CCR; b 25% RTCR; c 50% CCR; d 50% RTCR
Hardness (HV) | Tensile strength (MPa) | Yield strength (MPa) | % Elongation at break | |
---|---|---|---|---|
Mercury quenched | 182 | 499 | 331 | 25 |
25% RTCR | 211 | 693 | 632 | 13.3 |
50% RTCR | 233 | 727 | 684 | 10.45 |
25% CCR | 215 | 734 | 698 | 10.2 |
50% CCR | 237 | 786 | 753 | 8.7 |
25% RTCR Annld | 211 | 628 | 592 | 16.2 |
50% RTCR Annld | 233 | 710 | 634 | 12.5 |
25% CCR Annld | 215 | 659 | 621 | 12.8 |
50% CCR Annld | 237 | 735 | 703 | 9.8 |
Table 2 Mechanical properties of Zircaloy-2 after cross rolling
Hardness (HV) | Tensile strength (MPa) | Yield strength (MPa) | % Elongation at break | |
---|---|---|---|---|
Mercury quenched | 182 | 499 | 331 | 25 |
25% RTCR | 211 | 693 | 632 | 13.3 |
50% RTCR | 233 | 727 | 684 | 10.45 |
25% CCR | 215 | 734 | 698 | 10.2 |
50% CCR | 237 | 786 | 753 | 8.7 |
25% RTCR Annld | 211 | 628 | 592 | 16.2 |
50% RTCR Annld | 233 | 710 | 634 | 12.5 |
25% CCR Annld | 215 | 659 | 621 | 12.8 |
50% CCR Annld | 237 | 735 | 703 | 9.8 |
Fig. 4 EBSD images of 25% a and 50% b CCR zircaloy-2; average misorientation c and KAM d of CCR and RTCR zircaloy-2; KAM images of 25% e, 50% f CCR zircaloy-2
Fig. 5 {0002} and pole figure images of zircaloy-2: a mercury quenched; b 25% CCR; c 50% CCR; d 25% CCR after annealing at 400 °C for 30 min; e 50% CCR after annealing at 400 °C for 30 min
Slip | CRSS at 300 K | CRSS at 77 K |
---|---|---|
Prism <a> slip | 0.1 | 0.220 |
Basal <a> slip | 0.16 | 0.260 |
Pyramidal <c + a> slip | 0.320 |
Table 3 Critically resolved shear stress (CRSS) values of slip system at room temperature and cryo-temperature
Slip | CRSS at 300 K | CRSS at 77 K |
---|---|---|
Prism <a> slip | 0.1 | 0.220 |
Basal <a> slip | 0.16 | 0.260 |
Pyramidal <c + a> slip | 0.320 |
Fig. 9 Basal slip Taylor factor a and Schmid factor b values of CCR and RTCR zircaloy-2; basal slip Taylor factor image c, Schmid factor image d of 50% CCR zircaloy-2
Mercury quenched | 25% CCR | 25% RTCR | 50% CCR | 50% RTCR | |
---|---|---|---|---|---|
Average KAM (radian) | 0.008105 | 0.01951 | 0.017593 | 0.0276914 | 0.0233 |
Dislocation density ρ(m-2) | 9.944 × 1014 | 8.805 × 1014 | 1.818 × 1015 | 1.41 × 1015 | |
Energy (J/mol) | 29.02 | 25.70 | 53.06 | 41.15 |
Table 4 Energy and dislocation density of cross rolled samples
Mercury quenched | 25% CCR | 25% RTCR | 50% CCR | 50% RTCR | |
---|---|---|---|---|---|
Average KAM (radian) | 0.008105 | 0.01951 | 0.017593 | 0.0276914 | 0.0233 |
Dislocation density ρ(m-2) | 9.944 × 1014 | 8.805 × 1014 | 1.818 × 1015 | 1.41 × 1015 | |
Energy (J/mol) | 29.02 | 25.70 | 53.06 | 41.15 |
[1] | S.R. Macewen, J. Faber Jr., A.P.L. Turner, Acta Mater. 31, 657(1983) |
[2] | R.L. Mehan, F.W. Wiesinger, Mechanical Properties of Zircaloy-2, AEC Research and Development Report (1961) |
[3] | E.F. Ibrahim, In-Reactor Creep of Zirconium-Alloy Tubes and Its Correlation with Uniaxial Data: Applications-Related Phenomena for Zirconium and Its Alloys, ASTM STP 458, American Society for Testing and Materials (1969), pp. 18-36 |
[4] | R.G. Ballinger, R.M. Pelloux, J. Nucl. Mater. 97, 231(1981) |
[5] | K. Linga Murty, I. Charit, Prog. Nucl. Energy 48, 325 (2006) |
[6] | E. Tenckhoff, Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy, American Society for Testing and Materials (1988) |
[7] | Y.N. Wang, J.C. Huang,Mater. Chem. Phys. 81, 11(2003) |
[8] | R.J. McCabe, E.K. Cerreta, A. Misra, G.C. Kaschner, C.N. Tome, Philos. Mag. A 86, 3595 (2006) |
[9] | M. Knezevic, I.J. Beyerlein, T. Nizolek, N.A. Mara,Mater. Res. Lett. 1, 133(2013) |
[10] | R.J. McCabe, G. Proust, E.K. Cerreta, A. Misra, Int. J. Plast 25, 454 (2009) |
[11] | A. Akhtar, Metall. Trans. A 6(1217), 1217-1222 (1975) |
[12] | G. Monnet, B. Devincre, L.P. Kubin,Acta Mater. 52, 4317(2004) |
[13] | G.W. Groves, A. Kelly,Philos. Mag. 89, 877(1963) |
[14] | A. Akhtar,Acta Metall. 21, 1(1973) |
[15] | C.N. Tome, P.J. Maudlin, R.A. Lebensohn, G.C. Kaschner,Acta Mater. 49, 3085(2001) |
[16] | A. Akhtar, J. Nucl. Mater. 47, 79(1973) |
[17] | B.F. Luan, Q. Ye, J.W. Chen, H.B. Yu, D.L. Zhou, Y.C. Xin, Trans. Nonferrous Met. Soc. China 23, 2890 (2013) |
[18] | Y. Takayama, J.A. Szpunar,Mater. Trans. 45, 2316(2004) |
[19] | C.S. Barrett, T.B. Massalski, Structure of Metals (McGraw-Hill Book Company, New York, 1966) |
[20] | S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, N. Saibaba, Mater. Sci. Eng. A 603, 23 (2014) |
[21] | S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, N. Saibaba,Mater. Des. 55, 612(2014) |
[22] | H.L. Cox, D.G. Sopwith,Proc. Phys. Soc. 49, 134(1937) |
[23] | H.J. Bunge, Kristall Technik 5, 145 (1970) |
[24] | J.H. Shen, Y.L. Li, Q. Wei, Mater. Sci. Eng. A 582, 270 (2013) |
[25] | W.B. Hutchinson,Int. Met. Rev. 29, 25(1984) |
[26] | M. Matsuo, S. Hayami, S. Nagashima,Adv. X-Ray Anal. 14, 214(1971) |
[27] | B.L. Averbach, M.B. Bever, M.F. Comerford, J.S. Leach,Acta Metall. 4, 477(1956) |
[28] | R.L. Every, M. Hartherly, Texture 1, 183 (1974) |
[29] | J.S. Kalland, Y.C. Huang,Met. Sci. 18, 381(1984) |
[30] | M. Taheri, H. Weiland, A. Rollett, Metall. Mater. Trans. A 37, 19 (2006) |
[31] | A. Godfrey, W.Q. Cao, Q. Liu, N. Hansen, Metall. Mater. Trans. A 36, 2371 (2005) |
[32] | N.P. Gurao, S. Sethuraman, S. Suwas, Metall. Mater. Trans. A 44, 1497 (2013) |
[33] | D.F. Guo, M. Li, Y.D. Shi, Z.B. Zhang, H.T. Zhang, X.N. Liu, B.N. Wei, X.Y. Zhang,Mater. Des. 34, 275(2012) |
[34] | D.F. Guo, M. Li, Y.D. Shi, Z.B. Zhang, T.Y. Ma, H.T. Zhang, X.Y. Zhang, Mater. Sci. Eng. A 558, 611 (2012) |
[35] | S.K. Sahoo, V.D. Hiwarkar, I. Samajdar, G.K. Dey, D. Srivastav, R. Tiwari, S. Banerjee,Scr. Mater. 56, 963(2007) |
[36] | C.D. Judge, Thesis, Queen’s University Kingston (2009) |
[37] | Q. Yu, J. Sun, J.W. Morris Jr, A.M. Minor, Scr. Mater. 69, 57(2013) |
[38] | C.H. Cáceresa, P. Lukáč,Philos. Mag. 88, 977(2008) |
[39] | G. Monnet, B. Devincre, L.P. Kubin,Acta Mater. 52, 4317(2004) |
[40] | F.C. Frank, Report on the Symposium on the Plastic Deformation of Crystalline Solids (Carnegie Institute of Technology, Carnegie, 1950), pp. 150-154 |
[41] | Q. Liu, D.J. Jensen, N. Hansen,Acta Mater. 46, 5819(1998) |
[42] | T. Unga, O. Castelnau, G. Ribarik, M. Drakopoulos, J.L. Bechade, T. Chauveau, A. Snigirev, I. Snigireva, C. Schroer, B. Bacroix,Acta Mater. 55, 1117(2007) |
[1] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[2] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[3] | Jing-Hua Liu, Jin-Jun Liu, Qiang Zheng, Bao-Ru Bian, Juan Du. In Situ Transmission Electron Microscopy Observations of the Growth Process of Fe3O4-Ag Nanoparticles [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1283-1288. |
[4] | Xiaohui Shi, Zuhan Cao, Zhiyuan Fan, Junwei Qiao. Texture Evolution Behavior and Its Triggered Mechanical Anisotropy of CP Ti During Severe Cold Rolling and Subsequent Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1271-1282. |
[5] | Fenghua Wang, Peng Su, Linxin Qin, Shuai Dong, Yunliang Li, Jie Dong. Microstructure and Mechanical Properties of Mg-3Al-Zn Magnesium Alloy Sheet by Hot Shear Spinning [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1226-1234. |
[6] | Hou-Long Liu, Ling-Ling Liu, Ming-Yu Ma, Li-Qing Chen. Influence of Finish Rolling Temperature on Microstructure and Mechanical Properties of a 19Cr1.5Mo0.5 W Ferritic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 991-1000. |
[7] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
[8] | Yu-Ning Zan, Yang-Tao Zhou, Xiao-Nan Li, Guo-Nan Ma, Zhen-Yu Liu, Quan-Zhao Wang, Dong Wang, Bo-Lv Xiao, Zong-Yi Ma. Enhancing High-Temperature Strength and Thermal Stability of Al2O3/Al Composites by High-Temperature Pre-treatment of Ultrafine Al Powders [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 913-921. |
[9] | Ning Li, Cun-Lei Jia, Zhi-Wei Wang, Li-Hui Wu, Ding-Rui Ni, Zheng-Kun Li, Hua-Meng Fu, Peng Xue, Bo-Lv Xiao, Zong-Yi Ma, Yi Shao, Yun-Long Chang. Achieving a High-Strength CoCrFeNiCu High-Entropy Alloy with an Ultrafine-Grained Structure via Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 947-956. |
[10] | Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 789-798. |
[11] | Chang-Zhen Zhang, Chen-Dong Shao, Hai-Chao Cui, Hua-Li Xu, Feng-Gui Lu. Characterization of Multi-layer Weld Metal and Creep-Rupture Behavior of Modified 10Cr-1Mo Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 808-820. |
[12] | Ming He, Xian-Liang Li, Qing-Wei Wang, Qiang Wang, Zhi-Yuan Liu, Chong-Jun Wang. Influence Factors Analysis of Fe-C Alloy Blocking Layer in the Electromagnetic Induction-Controlled Automated Steel Teeming Technology [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 671-678. |
[13] | He Li, Yongsheng Liu, Yansong Liu, Kehui Hu, Zhigang Lu, Jingjing Liang. Influence of Sintering Temperature on Microstructure and Mechanical Properties of Al2O3 Ceramic via 3D Stereolithography [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 204-214. |
[14] | Jian Xun, Gaoyong Lin, Huiqun Liu, Siyu Zhao, Jing Chen, Xun Dai, Ruiqian Zhang. Texture Evolution and Dynamic Recrystallization of Zr-1Sn-0.3Nb-0.3Fe-0.1Cr Alloy During Hot Rolling [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 215-224. |
[15] | Ying Ma, Fu-Yin Han, Cheng Liu, Ming-Zhe Li. Microstructure, Texture Evolution, and Mechanical Properties of ECAP-Processed ZAT522 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 233-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||