Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (5): 531-541.DOI: 10.1007/s40195-015-0229-5
• Orginal Article • Next Articles
Ying Yan1, Yue Qi1, Qing-Wei Jiang1,3, Xiao-Wu Li1,2()
Received:
2014-08-16
Revised:
2014-10-24
Online:
2015-02-14
Published:
2015-07-23
Ying Yan, Yue Qi, Qing-Wei Jiang, Xiao-Wu Li. Temperature-Dependent Compressive Deformation Behavior of Commercially Pure Iron Processed by ECAP[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 531-541.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Metallographs showing the microstructures along the rod axes of CP Fe a and ECAP Fe unannealed b and pre-annealed at 300 °C c and 400 °C d for 1 h; arrows in Fig. 2c show the fine recrystallized regions
Fig. 4 Comparisons of true stress-strain curves of ECAP Fe unannealed and pre-annealed at 400 °C at different compressive temperatures and a strain rate of 10-2 s-1: a RT; b 100 °C; c 200 °C; d 300 °C
Fig. 6 SEM images of the surface deformation features for CP Fe compressed at different temperatures and a strain rate of 10-2 s-1: a, b RT; c 100 °C; d 200 °C; e, f 300 °C
Fig. 7 Low-magnification SEM images of the surface deformation features for ECAP Fe compressed at different temperatures and a strain rate of 10-2 s-1: a RT; b 100 °C; c 200 °C; d 300 °C
Fig. 8 High-magnification SEM images of the surface deformation features for ECAP Fe compressed at different temperatures and a strain rate of 10-2 s-1: a RT; b, c 100 °C; d, e 200 °C; f 300 °C
Fig. 9 SEM images of the surface deformation features for ECAP Fe annealed at 400 °C at different temperatures and a strain rate of 10-2 s-1: a RT; b, c 100 °C; d 200 °C; e, f 300 °C
Fig. 10 TEM images of the microstructures of CP Fe compressed to a 45% strain amount at different temperatures and a strain rate of 10-2 s-1: a, b RT; c, d 100 °C; e 200 °C; f 300 °C
Fig. 12 TEM images of the microstructures of ECAP Fe compressed to a 45% strain amount at different temperatures and a strain rate of 10-2 s-1: a, b RT; c 100 °C; d, e 200 °C; f 300 °C
Fig. 13 TEM images of the microstructures of ECAP Fe annealed at 400 °C compressed to a 45% strain amount at different temperatures and a strain rate of 10-2 s-1: a, b RT; c 100 °C; d 200 °C; e, f 300 °C
Fig. 14 Schematics of the major differences in deformation features and substructures after compressive deformation among CP Fe (a), the ECAP Fe unannealed (b) and annealed at 400 °C (c)
1. | E.O. Hall,Proc. Phys. Soc. B 64, 747(1951) |
2. | N.J. Petch,J Iron Steel Inst 174, 25(1953) |
3. | R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch,Philos. Mag. 7, 45(1962) |
4. | D.R. Fang, Z.F. Zhang, S.D. Wu, C.X. Huang, H. Zhang, N.Q. Zhao, J.J. Li,Mater. Sci. Eng. A 426, 305(2006) |
5. | B. Chen, D.L. Lin, L. Jin, X.Q. Zeng, C. Lu, Mater. Sci. Eng., A 483-484, 113 (2008) |
6. | E.A. EI-Danaf, Mater. Sci. Eng. A 487, 189(2008) |
7. | X. Molodova, G. Gottstein, M. Winning, R.J. Hellmig, Mater. Sci. Eng. A 460-461, 204 (2007) |
8. | X.W. Li, Y. Umakoshi, S.D. Wu, Z.G. Wang, I.V. Alexandrov, R.Z. Valiev,Phys. Status Solidi A 201, R119(2004) |
9. | Z.Y. Yu, Q.W. Jiang, X.W. Li,Phys. Status Solidi A 205, 2417(2008) |
10. | F.W. Long, Q.W. Jiang, L. Xiao, X.W. Li,Mater. Trans. 52, 1617(2011) |
11. | H. Mughrabi, H.W. Höppel, M. Kautz, R.Z. Valiev,Z Metall. 94, 1079(2003) |
12. | N. Kamikawa, X.X. Huang, N. Tsuji, N. Hansen,Acta Mater. 57, 4198(2009) |
13. | X.X. Huang, N. Hansen, N. Tsuji,Science 312, 249(2006) |
14. | W.Z. Han, S.D. Wu, S.X. Li, Y.D. Wang, Mater. Sci. Eng. A 483-484, 430 (2008) |
15. | R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee,Scr. Mater. 49, 669(2003) |
16. | Q.W. Jiang, L. Xiao, X.W. Li,Mater. Sci. Forum 682, 41(2011) |
17. | A.Y. Vinogradov, V.V. Stolyarov, S. Hashimoto, R.Z. Valiev,Mater. Sci. Eng. A 318, 163(2001) |
18. | Q.W. Jiang, X.W. Li,Mater. Sci. Eng. A 546, 59(2012) |
19. | R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, B. Baudelet,Acta Metall. Mater. 42, 2467(1994) |
20. | R.Z. Valiev, Mater. Sci. Eng. A 234-236, 59 (1997) |
21. | X.W. Li, S.D. Wu, Y. Wu, H.Y. Yasuda, Y. Umakoshi,Mater. Trans. 46, 3077(2005) |
22. | I.E. Dolzhenkov,Met. Sci. Heat Treat. 13, 220(1971) |
[1] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[2] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[3] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[4] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[5] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[6] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[7] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[8] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[9] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[10] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[11] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[12] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[13] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[14] | Ning Li, Cun-Lei Jia, Zhi-Wei Wang, Li-Hui Wu, Ding-Rui Ni, Zheng-Kun Li, Hua-Meng Fu, Peng Xue, Bo-Lv Xiao, Zong-Yi Ma, Yi Shao, Yun-Long Chang. Achieving a High-Strength CoCrFeNiCu High-Entropy Alloy with an Ultrafine-Grained Structure via Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 947-956. |
[15] | Zhigang Zhang, Xiaotong Lu, Jianrong Xu, Hongjie Luo. Characterization and Tribological Properties of Graphene/Copper Composites Fabricated by Electroless Plating and Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 903-912. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||