Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (10): 1645-1656.DOI: 10.1007/s40195-025-01895-1
Yi-Ming Chen1, Jian-Lin Lu1, Dong Yu1, Hua-Yong Ren1, Xiao-Bin Hu2, Lei Wang1, Zhi-Jun Wang1, Jun-Jie Li1(
), Jin-Cheng Wang1(
)
Received:2025-02-15
Revised:2025-04-12
Accepted:2025-05-05
Online:2025-06-28
Published:2025-06-28
Contact:
Jun-Jie Li, Jin-Cheng Wang
Yi-Ming Chen, Jian-Lin Lu, Dong Yu, Hua-Yong Ren, Xiao-Bin Hu, Lei Wang, Zhi-Jun Wang, Jun-Jie Li, Jin-Cheng Wang. Accurate Identification of High Relative Density in Laser-Powder Bed Fusion Across Materials Using a Machine Learning Model with Dimensionless Parameters[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1645-1656.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Prediction strategy for the relative density of materials manufactured by L-PBF, based on a combination of dimensionless parameters and ML method
| Symbol | Interpretation and unit |
|---|---|
| Laser power (W) | |
| Scanning speed (mm/s) | |
| Hatch spacing (mm) | |
| Layer thickness (mm) | |
| Beam radius (mm) | |
| Thermal conductivity (W/(mm·K)) | |
| Thermal diffusivity (mm2/s) | |
| Specific heat capacity (J/(g·K)) | |
| Density (g/mm3) | |
| Latent heat of fusion (J/g) | |
| Scan length (mm) | |
| Melting temperature (K) | |
| Vaporizing temperature (K) | |
| Powder bed or next track’s temperature (K) | |
| Preheat temperature (K) | |
| Peak temperature (K) | |
| Characteristic distance to limit the surface temperature to a finite value (mm) | |
| ${\raise0.7ex\hbox{${2 \cdot r_{B} }$} \!\mathord{\left/ {\vphantom {{2 \cdot r_{B} } v}}\right.\kern-0pt} \!\lower0.7ex\hbox{$v$}}$ The beam interaction time (s) | |
| Returning time (s) | |
| ${\raise0.7ex\hbox{${r_{{\text{B}}}^{2} }$} \!\mathord{\left/ {\vphantom {{r_{{\text{B}}}^{2} } {4\alpha }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${4\alpha }$}}$ Characteristic heat transfer time (s) | |
| The time taken to reach peak temperature (s) |
Table 1 Symbols and their interpretations and units used in this work
| Symbol | Interpretation and unit |
|---|---|
| Laser power (W) | |
| Scanning speed (mm/s) | |
| Hatch spacing (mm) | |
| Layer thickness (mm) | |
| Beam radius (mm) | |
| Thermal conductivity (W/(mm·K)) | |
| Thermal diffusivity (mm2/s) | |
| Specific heat capacity (J/(g·K)) | |
| Density (g/mm3) | |
| Latent heat of fusion (J/g) | |
| Scan length (mm) | |
| Melting temperature (K) | |
| Vaporizing temperature (K) | |
| Powder bed or next track’s temperature (K) | |
| Preheat temperature (K) | |
| Peak temperature (K) | |
| Characteristic distance to limit the surface temperature to a finite value (mm) | |
| ${\raise0.7ex\hbox{${2 \cdot r_{B} }$} \!\mathord{\left/ {\vphantom {{2 \cdot r_{B} } v}}\right.\kern-0pt} \!\lower0.7ex\hbox{$v$}}$ The beam interaction time (s) | |
| Returning time (s) | |
| ${\raise0.7ex\hbox{${r_{{\text{B}}}^{2} }$} \!\mathord{\left/ {\vphantom {{r_{{\text{B}}}^{2} } {4\alpha }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${4\alpha }$}}$ Characteristic heat transfer time (s) | |
| The time taken to reach peak temperature (s) |
| Alloy | RD (%) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| In718 [43] | 400 | 1100 | 0.12 | 0.03 | 0.035 | 20 | 298.15 | 0.0115 | 0.46 | 1609.15 | 99.50 |
| AlSi10Mg [7] | 140 | 300 | 0.05 | 0.03 | 0.035 | 8 | 373.15 | 0.213 | 0.898 | 933.15 | 91.82 |
| TC4 [44] | 195 | 1200 | 0.1 | 0.03 | 0.05 | 10 | 298.15 | 0.034 | 0.534 | 1873.5 | 96.50 |
| Cu [45] | 370 | 300 | 0.07 | 0.04 | 0.05 | 10 | 273.15 | 0.33 | 0.469 | 1357.75 | 90.70 |
| CoCrFeNiMn [46] | 200 | 1400 | 0.08 | 0.03 | 0.0375 | 4 | 298.15 | 0.02908 | 0.69 | 1530.52 | 80.58 |
Table 2 Excerpts of the dataset structures and types
| Alloy | RD (%) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| In718 [43] | 400 | 1100 | 0.12 | 0.03 | 0.035 | 20 | 298.15 | 0.0115 | 0.46 | 1609.15 | 99.50 |
| AlSi10Mg [7] | 140 | 300 | 0.05 | 0.03 | 0.035 | 8 | 373.15 | 0.213 | 0.898 | 933.15 | 91.82 |
| TC4 [44] | 195 | 1200 | 0.1 | 0.03 | 0.05 | 10 | 298.15 | 0.034 | 0.534 | 1873.5 | 96.50 |
| Cu [45] | 370 | 300 | 0.07 | 0.04 | 0.05 | 10 | 273.15 | 0.33 | 0.469 | 1357.75 | 90.70 |
| CoCrFeNiMn [46] | 200 | 1400 | 0.08 | 0.03 | 0.0375 | 4 | 298.15 | 0.02908 | 0.69 | 1530.52 | 80.58 |
| Number | Symbol | Expression |
|---|---|---|
| 1 | ||
| 2 | ||
| 3 | ||
| 4 | ||
| 5 | ||
| 6 | ||
| 7 | ||
| 8 | ||
| 9 | ||
| 10 |
Table 3 Symbols and corresponding expressions for dimensionless parameters [21,29,32]
| Number | Symbol | Expression |
|---|---|---|
| 1 | ||
| 2 | ||
| 3 | ||
| 4 | ||
| 5 | ||
| 6 | ||
| 7 | ||
| 8 | ||
| 9 | ||
| 10 |
Fig. 2 Feature selection based on four feature engineering methods (the final selected features are marked with black five-pointed stars), including a correlation analysis: a Spearman correlation analysis; three importance analysis: b Random Forest Model, c Linear Model, and d Lasso Model
| Models | Range of hyperparameters | Optimized parameters |
|---|---|---|
| XGB | n_estimators: (70, 300, step = 40) max_depth: (3, 7, step = 2) learning_rate: (0.05, 0.065, step = 0.05) | n_estimators = 250 max_depth = 5 learning_rate = 0.05 |
| RF | n_estimators: (70, 300, step = 40) max_depth: (3, 7, step = 2) | n_estimators = 200 max_depth = 7 |
| SVC | C: (0.1, 0.5, 1, 10, 50, 100) gamma: (0.05, 0.2, step = 0.025) kernel: ('linear', 'rbf') | C = 100 gamma = 0.125 kernal = 'rbf' |
| KNN | n_neighbors: (2, 6, step = 2) | n_neighbors = 2 |
Table 4 Hyperparameter ranges and optimization results for the four classifiers
| Models | Range of hyperparameters | Optimized parameters |
|---|---|---|
| XGB | n_estimators: (70, 300, step = 40) max_depth: (3, 7, step = 2) learning_rate: (0.05, 0.065, step = 0.05) | n_estimators = 250 max_depth = 5 learning_rate = 0.05 |
| RF | n_estimators: (70, 300, step = 40) max_depth: (3, 7, step = 2) | n_estimators = 200 max_depth = 7 |
| SVC | C: (0.1, 0.5, 1, 10, 50, 100) gamma: (0.05, 0.2, step = 0.025) kernel: ('linear', 'rbf') | C = 100 gamma = 0.125 kernal = 'rbf' |
| KNN | n_neighbors: (2, 6, step = 2) | n_neighbors = 2 |
Fig. 3 Classification accuracy of the four ML models on the sub-test set is quantitatively evaluated using four distinct accuracy metrics, where the score closer to 1 indicates higher classification performance
Fig. 4 Classification confusion matrices obtained from the application of four methods in the CoCrFeNiMn alloy system. a Model proposed in this work; b Phan's method; c single-system ML model based on process parameters; d cross-system ML model based on process and material parameters
Fig. 5 A quantitative comparison of the prediction performance of four different methods on the test alloys. a Classification scores of the four methods are shown across four metrics: Accuracy, Precision, Recall, and F1; b a comparison of the ROC curves of the four methods; c comparison of the AUC values for the ROC curves of the four methods
Fig. 6 RD classification effect of four methods on CoCrFeNiMn alloys in the $q_{{{\text{fraction}}}}^{*} - v^{*}$ space. According to Phan et al. [32], the two dotted lines at $q_{{{\text{fraction}}}}^{*} = 0$ and $q_{{{\text{fraction}}}}^{*} = 1$ separate the space into three regions, RD ≥ 99%, keyhole porosity and lack of fusion porosity. a Actual experimental values for the CoCrFeNiMn alloy; b–e represent the proposed model in this work, the Phan's method, the single-system ML model based on process parameters and the cross-system ML model based on both process and material parameters, respectively
Fig. 7 Implementation of the proposed model for classifying the RD of Ni41.8Co19Cr10Fe10Al1.5Ti2Mo2Hf0.1B0.1. a Confusion matrix of predicted RD versus measured RD; b ROC curve obtained from the classification results of the proposed model
Fig. 8 Comparison of defects of two samples #1 and #2. a SEM micrograph of #1; b SEM micrograph of #2. c 3D reconstruction results of defects in the CT results of #1; d 3D reconstruction results of defects in the CT results of #2; e statistical histogram of defect volumes for #1; f statistical histogram of defect volumes for #2
| [1] |
D. Guirguis, C. Tucker, J. Beuth, Nat. Commun. 15, 582 (2024)
DOI PMID |
| [2] | K. Taherkhani, O. Ero, F. Liravi, S. Toorandaz, E. Toyserkani, J. Manuf. Process. 99, 848 (2023) |
| [3] | J. Qin, F. Hu, Y. Liu, P. Witherell, C.C.L. Wang, D.W. Rosen, T.W. Simpson, Y. Lu, Q. Tang, Addit. Manuf. 52, 102691 (2022) |
| [4] | H. Ko, Y. Lu, Z. Yang, N.Y. Ndiaye, P. Witherell, J. Manuf. Systems. 67, 213 (2023) |
| [5] | C. Wang, X.P. Tan, S.B. Tor, C.S. Lim, Addit. Manuf. 36, 101538 (2020) |
| [6] | H. Luo, M. Wang, W. Liao, Y. Du, J. Mater. Res. Technol. 32, 1127 (2024) |
| [7] | Z. Chen, Z. Wei, P. Wei, S. Chen, B. Lu, J. Du, J. Li, S. Zhang, J. Mater. Eng. Perform. 26, 5897 (2017) |
| [8] | J.P. Pragana, P. Pombinha, V.R. Duarte, T.A. Rodrigues, J.P. Oliveira, I.M. Bragança, T.G. Santos, R.M. Miranda, L. Coutinho, C.M. Silva, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 234, 1246 (2020) |
| [9] | J.P. Choi, G.H. Shin, S. Yang, D.Y. Yang, J.S. Lee, M. Brochu, J.H. Yu, Powder Technol. 310, 60 (2017) |
| [10] | K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, F. Rezai, Mater. Sci. Eng. A 735, 182 (2018) |
| [11] | A. Yadav, M. Srivastava, P.K. Jain, S. Rathee, Int. J. Interact. Des. Manuf. 1, 2 (2024) |
| [12] | L. Guo, H. Liu, H. Wang, Q. Wei, J. Zhang, Y. Chen, C.L.A. Leung, Q. Lian, Y. Wu, Y. Zou, H. Wang, J. Manuf. Process. 105, 219 (2023) |
| [13] | W.L. Ng, G.L. Goh, G.D. Goh, J.S.J. Ten, W.Y. Yeong, Adv. Mater. 36, 2310006 (2024) |
| [14] | S. Chen, S. Chu, B. Mao, Acta Metall. Sin.-Engl. Lett. 38, 1 (2025) |
| [15] | J. Jiang, Int. J. Comput. Integ. Manuf. 36, 1258 (2023) |
| [16] | H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy, Prog. in Mater. Sci. 116, 100703 (2021) |
| [17] | T. Mukherjee, V. Manvatkar, A. De, T. DebRoy, J. Appl. Phys. 121, 6 (2017) |
| [18] | Y. Du, T. Mukherjee, T. DebRoy, Appl. Mater. Today 24, 101123 (2021) |
| [19] | M. Jiang, T. Mukherjee, Y. Du, T. DebRoy, NPJ Comput. Mater. 8, 184 (2022) |
| [20] | J.C. Ion, K.E. Eaeblin, M.F. Ashby, Acta Metall. 32, 11 (1984) |
| [21] | J.C. Ion, H.R. Shercliff, M.F. Ashby, Acta Metall. Mater. 40, 1539 (1992) |
| [22] | A.M. Rubenchik, W.E. King, S.S. Wu, J. Mater. Process. Technol. 257, 234 (2018) |
| [23] | T.W. Eagar, N.S. Tsai, Weld. J. 62, 346 (1983) |
| [24] | J. Ye, S.A. Khairallah, A.M. Rubenchik, M.F. Crumb, G. Guss, J. Belak, M.J. Matthews, Adv. Eng. Mater. 21, 1900185 (2019) |
| [25] | R. Fabbro, J. Mater. Process. Technol. 264, 346 (2019) |
| [26] | M. Naderi, J. Weaver, D. Deisenroth, N. Iyyer, R. McCauley, Integr. Mater. Manuf. Innov. 12, 11 (2023) |
| [27] | A. Großmann, J. Mölleney, T. Frölich, H. Merschroth, J. Felger, M. Weigold, A. Sielaff, C. Mittelstedt, Mater. Des. 194, 108952 (2020) |
| [28] | Y. Yang, A. Großmann, P. Kühn, J. Mölleney, L. Kropholler, C. Mittelstedt, B.X. Xu, J. Mater. Process. Technol. 299, 117316 (2022) |
| [29] | M. Thomas, G.J. Baxter, I. Todd, Acta Mater. 108, 26 (2016) |
| [30] | J.C. Ion, Surf. Eng. 18, 14 (2002) |
| [31] | S. Patel, M. Vlasea, Materialia 9, 100591 (2020) |
| [32] | M.A.L. Phan, O. Dew, I. Todd, Addit. Manuf. 85, 104145 (2024) |
| [33] | B. Liu, G. Fang, L. Lei, X. Yan, Int. J. Mech. Sci. 228, 107478 (2022) |
| [34] | A.M.F. Mohamed, Scr. Mater. (2025) |
| [35] | H. Zhang, H. Fu, X. He, C. Wang, L. Jiang, L.Q. Chen, J. Xie, Acta Mater. 200, 803 (2020) |
| [36] | H. Zhang, H. Fu, S. Zhu, W. Yong, J. Xie, Acta Mater. 215, 117118 (2021) |
| [37] | M.F. Ashby, K.E. Easterling, Acta Metall. 32, 1935 (1984) |
| [38] | L. Scime, J. Beuth, Addit. Manuf. 29, 100830 (2019) |
| [39] | C. Kamath, Y.J. Fan, Knowl. Inf. Syst. 57, 475 (2018) |
| [40] | J. Liu, J. Ye, D. Silva Izquierdo, A. Vinel, N. Shamsaei, S. Shao, J. Intell. Manuf. 34, 3249 (2023) |
| [41] | T. Le-Hong, P.C. Lin, J.Z. Chen, T.D.Q. Pham, X. Van Tran, J. Intell. Manuf. 34, 1241 (2023) |
| [42] | L. Liu, Z. Wang, Q. Wu, Y. Jia, Q. Xu, F. He, J. Li, J. Wang, Scr. Mater. 232, 115502 (2023) |
| [43] | M. Ni, C. Chen, X. Wang, P. Wang, R. Li, X. Zhang, K. Zhou, Mater. Sci. Eng. A 701, 344 (2017) |
| [44] | J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, B. Stucker, Prog. Addit. Manuf. 2, 157 (2017) |
| [45] | M. Abdelhafiz, K.S. Al-Rubaie, A. Emadi, M.A. Elbestawi, Materials 14, 2945 (2021) |
| [46] | H. Wang, B. Li, F.Z. Xuan, J. Mater. Process. Technol. 307, 117637 (2022) |
| [1] | Hao Cheng, Cheng-Lei Wang, Xiao-Du Li, Li Pan, Chao-Jie Liang, Wei-Jie Liu. Machine Learning-Based High Entropy Alloys-Algorithms and Workflow: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1453-1480. |
| [2] | Jiayu Wang, Ke Liu, Zhao Lei, Xing Li, Li Liu, Sujun Wu. Machine-Learning-Assisted Phase Prediction in High-Entropy Alloys Using Two-Step Feature Selection Strategy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1261-1274. |
| [3] | Biao Zhang, Yuntian Du, Huishuang Jia, Yuanyi Zhou, Liguang Wang, Minghe Zhang, Yunli Feng, Weimin Gao, Ning Xu. Hot Deformation Behavior of CoNiV Medium-Entropy Alloy: Constitutive Model, Convolutional Neural Network, Hot Processing Map, and Microstructure Evolution [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1275-1292. |
| [4] | Xiaolong Pei, Hua Hou, Yuhong Zhao. A Review of Intelligent Design and Optimization of Metal Casting Processes [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1293-1311. |
| [5] | Dongchao Li, Fen Zhang, Lanyue Cui, Yueling Guo, Rongchang Zeng. Accelerated Corrosion Rate of Wire Arc Additive Manufacturing of AZ91D Magnesium Alloy: The Formation of Nano-scaled AlMn Phase [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1069-1082. |
| [6] | Zhongxue Wang, Le Ren, Yating Zhang, Mengcheng Zhou, Xinfang Zhang. Realizing Ultra-fast Spheroidization of GCr15 Bearing Steel by Analyzing the Correlation of Carbide Dissolution Law and Pulsed Electric Current Parameters Through Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1207-1218. |
| [7] | Amir Behjat, Saber Sanaei, Mohammad Hossein Mosallanejad, Masoud Atapour, Abdollah Saboori. Electrochemical Behavior of Electron Beam Powder Bed Fused Ti536 Alloy under Simulated Inflammatory Conditions [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 969-980. |
| [8] | Lingxiao Du, Hang Ding, Yun Xie, Li Ji, Wanbin Chen, Yunze Xu. Effect of Laser Energy Density on Microstructures and Properties of Additively Manufactured AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 233-244. |
| [9] | Ali Kazemi Movahed, Reza Ghanavati, Abdollah Saboori, Luca Iuliano. A Review of Strategies for In Situ Mitigating of Residual Stress in Laser-Based Metal Additive Manufacturing: Insights, Innovations, and Challenges [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1657-1698. |
| [10] | Noa Lulu-Bitton, Nissim U. Navi, Noam Eliaz. Tensile Properties of Electrochemically Hydrogenated As-Built, Hot Isostatic Pressed and Heat-Treated Electron Beam Melted Ti-6Al-4V Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1711-1718. |
| [11] | Yuan Jiang, Baizhi Liang, Shewei Xin, Lei Shi, Siyuan Zhang, Kai Zhang, Hao Wang, Yi Yang, Lai-Chang Zhang. Cyclic Heat Treatment Induced Spheroidization of α Phase in Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1827-1838. |
| [12] | Erika Lannunziata, Mohammad Hossein Mosallanejad, Manuela Galati, Gabriele Piscopo, Abdollah Saboori. Analyzing the Interplay of Sintering Conditions on Microstructure and Hardness in Indirect Additive Manufacturing of 17-4PH Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1611-1620. |
| [13] | Jinpeng Hu, Tao Sun, Fujun Cao, Yifu Shen, Zhiyuan Yang, Chan Guo. Enhanced Strength-Ductility Synergy in Submerged Friction Stir Processing ER2319 Alloy Manufactured by Wire-Arc Additive Manufacturing via Creating Ultrafine Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 793-807. |
| [14] | Zhihong Zhu, Wenhang Ning, Xuanyang Niu, Yuhong Zhao. Machine Learning-Based Research on Tensile Strength of SiC-Reinforced Magnesium Matrix Composites via Stir Casting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 453-466. |
| [15] | Xin Li, Chenglei Wang, Laichang Zhang, Shengfeng Zhou, Jian Huang, Mengyao Gao, Chong Liu, Mei Huang, Yatao Zhu, Hu Chen, Jingya Zhang, Zhujiang Tan. Machine Learning-Based Comprehensive Prediction Model for L12 Phase-Strengthened Fe-Co-Ni-Based High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1858-1874. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
