Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (8): 1275-1292.DOI: 10.1007/s40195-025-01885-3
Previous Articles Next Articles
Biao Zhang1, Yuntian Du2, Huishuang Jia2, Yuanyi Zhou1, Liguang Wang1, Minghe Zhang1(), Yunli Feng1, Weimin Gao1, Ning Xu3
Received:
2024-12-20
Revised:
2025-02-10
Accepted:
2025-02-26
Online:
2025-06-17
Published:
2025-06-17
Contact:
Minghe Zhang
Biao Zhang, Yuntian Du, Huishuang Jia, Yuanyi Zhou, Liguang Wang, Minghe Zhang, Yunli Feng, Weimin Gao, Ning Xu. Hot Deformation Behavior of CoNiV Medium-Entropy Alloy: Constitutive Model, Convolutional Neural Network, Hot Processing Map, and Microstructure Evolution[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1275-1292.
Add to citation manager EndNote|Ris|BibTeX
Fig. 5 Regression linear curves of CoNiV alloys under different deformation conditions, a $\text{ln}\dot{\varepsilon }$−${\text{ln}\sigma }_{0.3}$, b $\text{ln}\dot{\varepsilon }$−${\sigma }_{0.3}$, c $\text{ln}\dot{\varepsilon }$−$\text{ln}\left[\text{sinh}(\alpha {\sigma }_{0.3})\right]$, d $\text{ln}\left[\text{sinh}(\alpha {\sigma }_{0.3})\right]$-1000/T from stress-strain data at a constant strain of ε = 0.3
n | α (MPa−1) | Q (kJ/mol) | lnA | ||||
---|---|---|---|---|---|---|---|
B0 | 5.3063 | C0 | 0.0057 | D0 | 426.5260 | E0 | 35.5714 |
B1 | − 20.9734 | C1 | − 0.0128 | D1 | − 1351.9815 | E1 | − 125.4483 |
B2 | 130.7489 | C2 | 0.0494 | D2 | 16,943.9769 | E2 | 1538.5121 |
B3 | − 468.9763 | C3 | − 0.0669 | D3 | − 85,228.6623 | E3 | − 7628.1603 |
B4 | 990.1494 | C4 | − 0.0560 | D4 | 221,720.8936 | E4 | 19,547.3350 |
B5 | − 1216.6295 | C5 | 0.2695 | D5 | − 317,018.1121 | E5 | − 27,487.1726 |
B6 | 813.6874 | C6 | − 0.2818 | D6 | 237,333.1590 | E6 | 20,212.6793 |
B7 | − 229.6329 | C7 | 0.0983 | D7 | − 72,783.5275 | E7 | − 6084.4268 |
Table 1 Coefficients of the polynomial for n, α, Q, and lnA
n | α (MPa−1) | Q (kJ/mol) | lnA | ||||
---|---|---|---|---|---|---|---|
B0 | 5.3063 | C0 | 0.0057 | D0 | 426.5260 | E0 | 35.5714 |
B1 | − 20.9734 | C1 | − 0.0128 | D1 | − 1351.9815 | E1 | − 125.4483 |
B2 | 130.7489 | C2 | 0.0494 | D2 | 16,943.9769 | E2 | 1538.5121 |
B3 | − 468.9763 | C3 | − 0.0669 | D3 | − 85,228.6623 | E3 | − 7628.1603 |
B4 | 990.1494 | C4 | − 0.0560 | D4 | 221,720.8936 | E4 | 19,547.3350 |
B5 | − 1216.6295 | C5 | 0.2695 | D5 | − 317,018.1121 | E5 | − 27,487.1726 |
B6 | 813.6874 | C6 | − 0.2818 | D6 | 237,333.1590 | E6 | 20,212.6793 |
B7 | − 229.6329 | C7 | 0.0983 | D7 | − 72,783.5275 | E7 | − 6084.4268 |
Fig. 13 Correlation and relative error histograms between experimental and predicted values of flow stress for different models: a Arrhenius model, b OOA-CNN model
Fig. 16 Hot processing map (ε = 0.8) of CoNiV alloys and corresponding OM images: a hot processing map, b 1000 °C /1 s−1, c 950 °C /0.001 s−1, d 1100 °C /0.1 s−1, e 1100 °C/0.01 s−1. Where CD and TD denote the compression direction and transverse direction, respectively
Fig. 17 EBSD analysis of CoNiV alloys under different conditions: a1-d1 IPF images, a2-d2 GOS maps, and a3-d3 KAM images. a1-a3 1000 °C/1 s−1, b1-b3 950 °C/0.001 s−1, c1-c3 1100 °C /0.1 s−1, d1-d3 1100 °C /0.01 s−1. Where CD and TD denote the compression direction and transverse direction, respectively
Fig. 18 Statistics of mean grain size, DRX volume fraction, and mean GND density of CoNiV alloys under various conditions: a 1000 °C/1 s−1, b 950 °C/0.001 s−1, c 1100 °C/0.1 s−1, d 1100 °C/0.01 s−1
[1] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004) |
[2] | B. Cantor, I.T.H. Chan, P. Knight, A.J.B. Vincen, Mater. Sci. Eng. A 375, 213 (2004) |
[3] | X. Huang, Y. Dong, S.M. Lu, C.Q. Li, Z.R. Zhang, Acta Metall. Sin.-Engl. Lett. 34, 1079 (2021) |
[4] | Z.S. Chai, K.X. Zhou, Q.F. Wu, Z.J. Wang, Q. Xu, J.J. Li, J.C. Wang, Acta Metall. Sin.-Engl. Lett. 35, 1607 (2022) |
[5] | D.D. Zhang, J.Y. Zhang, J. Kuang, G. Liu, J. Sun, Acta Mater. 220, 117288 (2021) |
[6] | N. Xu, Y.B. Huang, X.M. Liu, D.P. Xuan, H.L. Lu, S.L. Li, Y.D. Wang, J.S. Wang, Mater. Sci. Eng. A 918, 147436 (2024) |
[7] |
B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z.G. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7, 10602 (2016)
DOI PMID |
[8] | M.X. Yang, D.S. Yan, F.P. Yuan, P. Jiang, X.L. Wu, Natl. Acad. Sci. USA 115, 7224 (2018) |
[9] | S.S. Sohn, A.K.D. Silva, Y.J. Ikeda, F. Körmann, W.J. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 31, 1807142 (2019) |
[10] | J. Tian, K. Tang, Y.K. Wu, T.H. Cao, J.B. Pang, F. Jiang, Mater. Sci. Eng. A 811, 141054 (2021) |
[11] | Z.M. Pan, H. Luo, H.X. Cheng, Q.C. Zhao, X.F. Wang, Y. Fu, Y.C. Ma, X.G. Li, Mater. Today Phys. 33, 101062 (2023) |
[12] |
T.J. Jang, W.S. Choi, D.W. Kim, G. Choi, H. Jun, A. Ferrari, F. Körmann, P.P. Choi, S.S. Sohn, Nat. Commun. 12, 4703 (2021)
DOI PMID |
[13] | W.T. Wu, H. Fu, Z.J. Xue, W.J. Fan, B. Gan, N.S. Jiang, M. Xia, F. Zhao, J. Mater. Res. Technol. 29, 1962 (2024) |
[14] | N.R. Wang, Y.J. Zhang, L. Cai, Q.K. Huang, Z.Y. Zhang, W.S. Ma, H. Wu, Y. Wang, J. Alloys Compd. 994, 174685 (2024) |
[15] | J.C. Long, L. Deng, J.S. Jin, M. Zhang, X.F. Tang, P. Gong, X.Y. Wang, G.F. Xiao, Q.X. Xia, J. Magnes. Alloys 12, 3003 (2024) |
[16] | Z. Savaedi, R. Motallebi, H. Mirzadeh, J. Alloys Compd. 903, 163964 (2022) |
[17] | H.L. Yi, D.X. Wei, Y.C. Wang, L.Q. Wang, M.Y. Fang, K. Yang, H. Kato, Metals 10, 1341 (2020) |
[18] | J.B. Lu, W.J. Xin, T.F. Ma, X.H. Wang, D. Dong, D.D. Zhu, J. Alloys Compd. 968, 172215 (2023) |
[19] | M. Karimzadeh, M. Malekan, H. Mirzadeh, N. Saini, L. Li, Intermetallics 168, 108240 (2024) |
[20] | P. Wan, H. Zou, K.L. Wang, Z.Z. Zhao, J. Alloys Compd. 826, 154047 (2020) |
[21] | X.J. Liu, H.Y. Zhang, S. Zhang, W. Peng, G. Zhou, C. Wang, L.J. Chen, J. Alloys Compd. 968, 172052 (2023) |
[22] | L. Qiao, J.Y. Inoue, J.C. Zhu, J. Mater. Res. Technol. 29, 353 (2024) |
[23] | J.F. Jiang, J. Dong, M.J. Huang, Y. Wang, J. Mater. Res. Technol. 27, 1173 (2023) |
[24] | J.H. Zhao, J.S. Zhang, X.Y. Li, X.J. Gao, N.N. Guo, C.C. Shi, G.M. Zhu, J.H. Ding, F.S. Yin, J. Mater. Res. Technol. 26, 7012 (2023) |
[25] | Y. Sun, W.H. Ye, L.X. Hu, J. Mater. Eng. Perform. 25, 1621 (2016) |
[26] | G. Liu, S.L. Li, H.L. Zhang, X.T. Wang, Y.L. Wang, Acta Metall. Sin.-Engl. Lett. 31, 798 (2018) |
[27] | I. Weiss, S.L. Semiatin, Mater. Sci. Eng. A 243, 46 (1998) |
[28] | S. Ankem, J.G. Shyue, M.N. Vijayshankar, R.J. Arsenault, Mater. Sci. Eng. A 111, 51 (1989) |
[29] | G.A. He, Y.F. Zhao, B. Gan, X.F. Sheng, Y. Liu, L.M. Tan, J. Alloys Compd. 815, 152382 (2020) |
[30] | K.H. Jung, H.W. Lee, Y.T. Im, Mater. Sci. Eng. A 519, 94 (2009) |
[31] | C.M. Sellars, W.J. Mctegart, Acta Metall. 14, 1136 (1966) |
[32] | M.H. Ghavam, M. Morakabati, S.M. Abbasi, H. Badri, Trans. Nonferrous Met. Soc. China 25, 748 (2015) |
[33] | G. Tan, H.Z. Li, Y. Wang, S.C. Qiao, L. Yang, Z.Q. Huang, T.W. Cheng, Z.X. Zhao, J. Alloys Compd. 874, 159889 (2021) |
[34] | H.T. Jeong, H.K. Park, K. Park, T.W. Na, W.J. Kim, Mater. Sci. Eng. A 756, 528 (2019) |
[35] | Z.P. Wan, L.X. Hu, Y. Sun, T. Wang, Z. Li, J. Alloys Compd. 769, 367 (2018) |
[36] | O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, D.J. Inman, J. Sound Vib. 388, 154 (2017) |
[37] | Z. Li, F. Liu, W.J. Yang, S.H. Peng, J. Zhou, IEEE Trans. Neural Netw. Learn Syst. 33, 6999 (2021) |
[38] | M. Dehghani, P. Trojovský, Front. Mech. Eng. 8, 2022 (2023) |
[39] | R. Zhao, J.C. He, H. Tian, Y.J. Jing, J. Xiong, Materials 16, 4987 (2023) |
[40] | O. Elgack, B. Almomani, J. Syarif, M. Elazab, M. Irshaid, M. Al-Shabi, J. Mater. Res. Technol. 25, 5575 (2023) |
[41] | M.R. Zamani, H. Mirzadeh, M. Malekan, Mater. Sci. Technol. 39, 3351 (2023) |
[42] | Z.X. Wei, Q. Gao, X.X. Su, Z.H. Feng, B.H. Ma, F.Z. He, L. Peng, J. Li, G.Y. Zu, J. Mater. Res. Technol. 29, 2918 (2024) |
[43] | C.Z. Fu, C.C. Tao, H.J. Huang, G. Zhou, X.J. Lin, H.Y. Zhang, L.J. Chen, X.G. Yuan, Intermetallics 171, 108342 (2024) |
[44] | S. Kuma, H. Pradhan, N. Shah, M.R. Rahul, G. Phanikumar, Scr. Mater. 234, 115543 (2023) |
[45] | S. Zhang, H.Y. Zhang, X.J. Liu, S.Y. Wang, C. Wang, G. Zhou, S.Q. Zhang, L.J. Chen, J. Mater. Res. Technol. 29, 589 (2024) |
[46] | Y.V.R.K. Prasad, T. Seshacharyulu, Mater. Sci. Eng. A 243, 82 (1998) |
[47] | W.J. Kim, H.T. Jeong, H.K. Park, K. Park, T.W. Na, E. Choi, J. Alloys Compd. 802, 152 (2019) |
[48] | H.T. Jeong, W.J. Kim, J. Alloys Compd. 869, 159256 (2021) |
[49] | K.R.V.Y. Prasad, J. Mater. Eng. Perform. 12, 638 (2003) |
[50] | Z.Y. Jin, N.N. Li, K. Yan, J. Wang, J. Bai, H. Dong, Acta Metall. Sin.-Engl. Lett. 31, 71 (2018) |
[51] | K.R.V.Y. Prasad, Indian J. Technol. 28, 435 (1990) |
[52] | T.B. Britton, J. Jiang, Y. Guo, A. Vilalta-Clemente, D. Wallis, L.N. Hansen, A. Winkelmann, A.J. Wilkinson, Mater. Charact. 117, 113 (2016) |
[53] | Y.L. Zhu, Y. Cao, R. Luo, C.J. Liu, H.S. Di, G. Shu, G.J. Huang, Q. Liu, Acta Metall. Sin.-Engl. Lett. 34, 1296 (2021) |
[54] | S.A. Sajadi, M.R. Toroghinejad, A. Rezaeian, G.R. Ebrahimi, J. Alloys Compd. 937, 168267 (2023) |
[1] | Jiayu Wang, Ke Liu, Zhao Lei, Xing Li, Li Liu, Sujun Wu. Machine-Learning-Assisted Phase Prediction in High-Entropy Alloys Using Two-Step Feature Selection Strategy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1261-1274. |
[2] | Xiaolong Pei, Hua Hou, Yuhong Zhao. A Review of Intelligent Design and Optimization of Metal Casting Processes [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1293-1311. |
[3] | Zhongxue Wang, Le Ren, Yating Zhang, Mengcheng Zhou, Xinfang Zhang. Realizing Ultra-fast Spheroidization of GCr15 Bearing Steel by Analyzing the Correlation of Carbide Dissolution Law and Pulsed Electric Current Parameters Through Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1207-1218. |
[4] | Tianyi Zeng, Zirui Luo, Hao Chen, Wei Wang, Ke Yang. Flow Behavior and Dynamic Recrystallization Mechanism of CSS-42L Bearing Steel During Hot Compression Deformation [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 465-480. |
[5] | Long Liu, Zijian Zhou, Jie Yu, Xinguang Wang, Chuanyong Cui, Rui Zhang, Yizhou Zhou, Xiaofeng Sun. Hot Deformation Behavior and Workability of a New Ni-W-Cr Superalloy for Molten Salt Reactors [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1453-1466. |
[6] | Hengrui Hu, Jiayu Qin, Yunpeng Zhu, Jinhui Wang, Xiaoqiang Li, Peipeng Jin. Hot Deformation Behavior and Microstructures Evolution of GNP-Reinforced Fine-Grained Mg Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 407-424. |
[7] | Zhihong Zhu, Wenhang Ning, Xuanyang Niu, Yuhong Zhao. Machine Learning-Based Research on Tensile Strength of SiC-Reinforced Magnesium Matrix Composites via Stir Casting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 453-466. |
[8] | Yong-Chao Gai, Rui Zhang, Chuan-Yong Cui, Zi-Jian Zhou, Yi Tan, Yi-Zhou Zhou, Xiao-Feng Sun. Hot Compression Behavior and Tensile Property of a Novel Ni-Co-Based Superalloy Prepared by Electron Beam Smelting Layered Solidification Technology [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 283-292. |
[9] | Xin Li, Chenglei Wang, Laichang Zhang, Shengfeng Zhou, Jian Huang, Mengyao Gao, Chong Liu, Mei Huang, Yatao Zhu, Hu Chen, Jingya Zhang, Zhujiang Tan. Machine Learning-Based Comprehensive Prediction Model for L12 Phase-Strengthened Fe-Co-Ni-Based High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1858-1874. |
[10] | Xiaoyuan Teng, Jianchao Pang, Feng Liu, Chenglu Zou, Xin Bai, Shouxin Li, Zhefeng Zhang. Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1536-1548. |
[11] | Yanyang Wu, Qiaodan Hu, Zongye Ding, Jianguo Li. Effect of Grain Size and Compression Direction on the Hot Deformation Characteristics of High-Cr Ultra-Super-Critical Rotor Steel with Columnar Grains [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 803-813. |
[12] | Hongyang Cui, Yi Tan, Rusheng Bai, Lidan Ning, Chuanyong Cui, Xiaogang You, Pengting Li. Recrystallization Behavior of the New Ni-Co-Based Superalloy with Fusion Structure Produced by Electron Beam Smelting Layered Solidification Technology [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2013-2030. |
[13] | Zhendan Yang, Xiao Zhang, Chenhao Sang, Pei Wang, Dianzhong Li. Effects of Hot Deformation on the Evolution of Microstructure in Pearlitic Steel Wire Rod [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2058-2068. |
[14] | Chang Liu, Jianbo Zhang, Yikai Yang, Xingchuan Xia, Tian He, Jian Ding, Ying Tang, Zan Zhang, Xueguang Chen, Yongchang Liu. Hot Deformation Behavior of ATI 718Plus Alloy with Different Microstructures [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1383-1396. |
[15] | H. R. Rezaei Ashtiani, A. A. Shayanpoor. Effect of Initial Grain Size on the Hot Deformation Behavior and Microstructural Evolution of Pure Copper [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 662-678. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||