Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (10): 1657-1698.DOI: 10.1007/s40195-025-01902-5
Previous Articles Next Articles
Ali Kazemi Movahed1, Reza Ghanavati2,3, Abdollah Saboori2,3(
), Luca Iuliano2,3
Received:2025-02-25
Revised:2025-04-10
Accepted:2025-05-04
Online:2025-07-15
Published:2025-07-15
Contact:
Abdollah Saboori
Ali Kazemi Movahed, Reza Ghanavati, Abdollah Saboori, Luca Iuliano. A Review of Strategies for In Situ Mitigating of Residual Stress in Laser-Based Metal Additive Manufacturing: Insights, Innovations, and Challenges[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1657-1698.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Defects during the fabrication: a warping and layer separation caused by high residual stress and b cracking in the part due to accumulated tensile stresses [50]. c Distortions and delamination during the AM process [42]. d Failure during manufacturing of a Ti-6Al-4V component caused by the build-up of residual stress [51]. e Example of a build that failed for a thin plate [36]
Fig. 3 Classification and formation mechanism of residual stress: a basic mechanisms of stress and plastic deformation development during: a heating and thermal expansion of new layer (top) and b cooling and thermal contraction of new layer (bottom) [63]. Cracks on the L-PBF part: c macro- and d microcracks [64]. e A schematic of different types of residual stress divided based on their crack length [63]. f Three different types of residual stress—type I, type II, and type III concerning their different crack spans: (1) Atom probe tomography analysis of hydrogen distribution in laser peened Ti6Al4V alloy: implications for residual stress evolution and hydrogen embrittlement control [65], (2) OIM grain boundary map with twin boundaries indicated by finer lines in Ni-base (alloy 600) stainless alloys [66], and (3) crack formation in a Ti6A14V thin wall produced via L-PBF caused by the build-up of residual stresses [51]
Fig. 5 The comparison of measurement methods in categories including penetration depth, cost, and accuracy—the methods are sorted from top to bottom [73,92,93]
| Method | Type | Fundamental | Surface Stress | Subsurface\internal stress | Depth | Limitation |
|---|---|---|---|---|---|---|
| X-ray diffraction | Non-destructive | Measuring lattice spacing—Bragg’s law | ✓ | ✕ | ~ 10-30 μm | Affected by grain size, surface only |
| Synchrotron X-ray diffraction | Non-destructive | Measuring lattice spacing | ✓ | ✓ | Up to ~ 10 mm (Ti alloys) | Expensive facilities, sensitive to geometry |
| Magnetic methods | Non-destructive | Measuring variations in magnetic signal caused by stress-induced domains | ✓ | ✕ | ~ 0.2 mm | Applicable only to ferromagnetic materials, sensitive to surface condition |
| Ultrasonic methods | Non-destructive | Detecting velocity shifts caused by stress-induced domains in acoustic waves | ✓ | ✓ | Frequency dependent | Need for calibration, influenced by microstructure |
| Contour method | Destructive | Calculating 2D stress by measuring deformation of cut parts | ✓ | ✓ | cm-scale | Precision cutting, further FEM analysis is needed |
| Neutron diffraction | Non-destructive | Measuring deep internal lattice spacing using neutron scattering | ✓ | ✓ | Up to ~ 25 mm (steel), 100 mm (Al) | Slow process, expensive equipment |
| Hole Drilling | Semi-destructive | Altering stresses by applying strain | ✓ | ✕ | ~ 1-2 mm | Requiring accurate calibration |
Table 1 The summary of properties and comparison of measurement methods [73,92,93]
| Method | Type | Fundamental | Surface Stress | Subsurface\internal stress | Depth | Limitation |
|---|---|---|---|---|---|---|
| X-ray diffraction | Non-destructive | Measuring lattice spacing—Bragg’s law | ✓ | ✕ | ~ 10-30 μm | Affected by grain size, surface only |
| Synchrotron X-ray diffraction | Non-destructive | Measuring lattice spacing | ✓ | ✓ | Up to ~ 10 mm (Ti alloys) | Expensive facilities, sensitive to geometry |
| Magnetic methods | Non-destructive | Measuring variations in magnetic signal caused by stress-induced domains | ✓ | ✕ | ~ 0.2 mm | Applicable only to ferromagnetic materials, sensitive to surface condition |
| Ultrasonic methods | Non-destructive | Detecting velocity shifts caused by stress-induced domains in acoustic waves | ✓ | ✓ | Frequency dependent | Need for calibration, influenced by microstructure |
| Contour method | Destructive | Calculating 2D stress by measuring deformation of cut parts | ✓ | ✓ | cm-scale | Precision cutting, further FEM analysis is needed |
| Neutron diffraction | Non-destructive | Measuring deep internal lattice spacing using neutron scattering | ✓ | ✓ | Up to ~ 25 mm (steel), 100 mm (Al) | Slow process, expensive equipment |
| Hole Drilling | Semi-destructive | Altering stresses by applying strain | ✓ | ✕ | ~ 1-2 mm | Requiring accurate calibration |
| Case | Pre-heat temperature (°C) | Description | Residual stress (MPa) | Reduction (%) |
|---|---|---|---|---|
| T1 | 100 | Standard bed temperature | 214 | - |
| T2 | 370 | - | 61 | 71 |
| T3 | 470 | - | 25 | 88 |
| T4 | 570 | 30 °C below the start of martensitic decomposition temperature | 1 | 99 |
| T5 | 670 | 30 °C below the start of the annealing temperature range | 5 | 97 |
| T6 | 770 | 20 °C below the start of the higher annealing temperature range | − 4 | 98 |
Table 2 Amplitude of residual stress concerning different cases of pre-heating temperature
| Case | Pre-heat temperature (°C) | Description | Residual stress (MPa) | Reduction (%) |
|---|---|---|---|---|
| T1 | 100 | Standard bed temperature | 214 | - |
| T2 | 370 | - | 61 | 71 |
| T3 | 470 | - | 25 | 88 |
| T4 | 570 | 30 °C below the start of martensitic decomposition temperature | 1 | 99 |
| T5 | 670 | 30 °C below the start of the annealing temperature range | 5 | 97 |
| T6 | 770 | 20 °C below the start of the higher annealing temperature range | − 4 | 98 |
Fig. 6 The schematic of essential process parameters mitigating residual stress, including laser power, scanning strategy, scanning speed, and hatch spacing
| Alloy | 0 s | 20 s | 40 s |
|---|---|---|---|
| Inconel 625 | 740 MPa | 648 MPa (12%↓) | 566 MPa (14%↓) |
| Ti-6Al-4V | 98 MPa | 176 MPa (80%↑) | 218 MPa (24%↑) |
Table 3 Residual stress obtained for different dwell times in the AM process of Inconel 625 and Ti-6Al-4V alloys [120]
| Alloy | 0 s | 20 s | 40 s |
|---|---|---|---|
| Inconel 625 | 740 MPa | 648 MPa (12%↓) | 566 MPa (14%↓) |
| Ti-6Al-4V | 98 MPa | 176 MPa (80%↑) | 218 MPa (24%↑) |
Fig. 7 The effect of the layer thickness on the dimension of the molten pool: a 25 μm layer thickness, b 50 μm layer thickness, and c 75 μm layer thickness of L-PBF fabrication of Ti-6Al-4V [127]
Fig. 8 a Various combinations of laser power and scanning speed considered for study; green squares indicate a combination giving high densification (> 99.9%) [132]. b Effect of varying the laser power on residual stress and cooling rate [127]. c Shear residual stress and d normal residual stress measured by XRD and hole-drilling residual stress measurements on the top surface of 12.7 mm L-PBF deposits fabricated with different scan speeds [133]
Fig. 9 Maximum von Mises stress at different laser power [134]: a schematic of the solution domain consisting of powder bed, b scanning strategy. Maximum von Mises stress at laser power 150 W and scanning speed 750 mm/s: c at the end of the first layer, d at the end of the second layer, e at the end of the third layer, and f at the end of the fifth layer. Maximum von Mises stress at laser power 120 W and scanning speed 750 mm/s: g at the end of the first layer and h at the end of the fifth layer [134]
Fig. 10 Effect of laser power on formation of residual stress for two different scanning strategies [135]: a schematic of the model used in FEA of L-PBF, b in-depth residual stress x-direction, and c in-depth residual stress in y-direction of the component [135]
Fig. 11 a Transient temperature distribution during layer melting at the end of the 5th track scan [140]. b Predicted melt pool temperature contours after scanning the 5th track [140]. c Melt pool width of various scanning speeds, and d melt pool depth of various scanning [140]. Numerical results showing the total molten powder volume (including both solidified and evaporated portions), the solidified molten volume, and the percentage of evaporated molten powder at different scanning speeds at laser power of e 150 W, f 250 W, g 350 W [141]
Fig. 12 Size of molten pool formed by L-PBF by two different scanning strategies [135]: a stripe scanning strategy and b chessboard (island) scanning strategy. Molten pool size in different L-PBF process parameters [135]: c P = 160 W, stripe scanning; d P = 160 W, chessboard scanning; e P = 200 W, stripe scanning; f P = 200 W, chessboard scanning. Effect laser power in-depth residual stress with different laser power of P = 160 W and P = 200 W, constant scanning speed and two scanning strategies [135]: g stripe scanning; h chessboard scanning
| Sample | Power (W) | Scanning speed (mm/s) | Scanning strategy | Energy density | Molten pool width size (μm) | Residual stress (MPa) |
|---|---|---|---|---|---|---|
| 1 | 160 | 400 | Striped | 56 | 122 × 60 | 469.7 |
| 2 | 500 | Striped | 45 | 112 × 45 | 242.7 | |
| 3 | 600 | Striped | 37 | 100 × 40 | 199.3 | |
| 4 | 200 | 400 | Chessboard | 56 | 115 × 35 | 405 |
| 6 | 600 | Chessboard | 37 | 100 × 38 | 122.6 | |
| 9 | 600 | Chessboard | 46 | 125 × 35 | 324.4 |
Table 4 The value of energy volume density for different laser power and scanning speeds and its corresponding value of molten pool size and residual stress [115]
| Sample | Power (W) | Scanning speed (mm/s) | Scanning strategy | Energy density | Molten pool width size (μm) | Residual stress (MPa) |
|---|---|---|---|---|---|---|
| 1 | 160 | 400 | Striped | 56 | 122 × 60 | 469.7 |
| 2 | 500 | Striped | 45 | 112 × 45 | 242.7 | |
| 3 | 600 | Striped | 37 | 100 × 40 | 199.3 | |
| 4 | 200 | 400 | Chessboard | 56 | 115 × 35 | 405 |
| 6 | 600 | Chessboard | 37 | 100 × 38 | 122.6 | |
| 9 | 600 | Chessboard | 46 | 125 × 35 | 324.4 |
Fig. 13 Contour plot showing the optimal processing region of the laser process parameters for obtaining the best mechanical properties of Inconel 718 parts fabricated by L-PBF [155]
Fig. 15 a Unidirectional scanning strategy. Profiles views of b von Mises stress, c surface normal stresses in y-direction, and d surface normal stresses in x-direction for 3 mm × 3 mm test case when using unidirectional scanning strategy. e Alternating scanning strategy. Profiles views of f von Mises stress, g surface normal stresses in y-direction, and h surface normal stresses in x-direction for 3 mm × 3 mm test case when using alternating scanning strategy. The schematic of scanning strategies used by Patterson [36]: i meander, j stripes. k Z-measurements from digital image correlation (DIC) along a diagonal of two test plates [36]. Different scanning strategies investigated by Peiying Bian [135]: l stripe of 0$^\circ$ and 30$^\circ$ rotation, m chessboard of 0$^\circ$ and 45$^\circ$
Fig. 16 Scanning strategies used in deposition and corresponding printed samples, von misses stress and stress analysis along different lines of the component [163]. Scanning strategies: a SDM, b RM, c SRM. Printed sample by scanning strategies: d SDM, e RM, f SRM. Contour of equivalent von mises stress for different scanning strategies: g SDM, h RM, i SRM. Residual stress distribution along line BC in different scanning strategies: j longitudinal stress, k transversal stress. l Normal stress distribution along line HI in different scanning strategies. m Longitudinal stress distribution along line DE in different scanning strategies. n Transversal stress distribution along line FG in different path strategies [163]
Fig. 17 Scanning strategies used by Cheng et al. [164] in the investigation of L-PBF fabrication of Inconel 718 and their corresponding temperature distribution, residual stress in y-direction, and residual stress in x-direction: a island scanning, b line scanning, c 45$^\circ$ line scanning, d 45$^\circ$ rotate scanning, e 90$^\circ$ rotate scanning, f 67$^\circ$ rotate scanning, g in–out scanning, h out-in scanning
Fig. 18 Twelve different scanning strategies that Zhang et al. used in [165]: a opposite S scanning, b parallel S 90$^\circ$ scanning, c parallel S no rotation scanning, d 0 approaching beam scanning, e 45$^\circ$ rotation approaching beam scanning, f opposite halves scanning, g parallel halves scanning, h island approaching beam scanning, i island mixed scanning, j beginning contour fill, k ending contour fill, and l delayed laser scanning. m The value of final average residual stress for each scanning strategy before releasing base plate constraints (S11, S22, and maximum principal stress) and n the value of final average residual stress for each scanning strategies releasing constraint (S11, S22, and maximum principal stress), and o the value of deflection in z-direction occurred in each scanning strategies after releasing base plate constraints [165]
Fig. 19 The scanning strategies and the relative longitudinal and transverse residual stress investigated by Zhan et al. [167]: a reciprocating scanning, b 90$^\circ$ reciprocating scanning, c line spacing, d screwing scanning, e reciprocating overlapping scanning, f island scanning
Fig. 20 Analyzing the effect of scanning strategy on residual stress by Zhang et al. [168], six scanning strategies and their corresponding experimental results of stresses in x-direction and y-direction are represented: a island scanning, b 0$^\circ$ no rotation, c 45$^\circ$ inclined 90$^\circ$ rotation, d 45$^\circ$ rotation, e 90$^\circ$ line rotation, f 67$^\circ$ rotation
| Scanning strategy | Maximum | Stress reduction compared to island strategy (%) | Thickness (mm) |
|---|---|---|---|
| 45° Rotation | 37.02 | 46.23 | 1 |
| 90° Line Rotation | 40.32 | 40.79 | 1 |
| 0° No rotation | 68.10 | 1 | 1 |
| Island scanning | 68.85 | - | 1 |
| 45° Rotation | 55.75 | 22.19 | 3 |
| Island scanning | 71.65 | - | 3 |
| 0° No rotation | 76.40 | − 6.6 | 3 |
Table 5 Results for the residual stress obtained for different scanning strategies in PBF-LB fabrication Ti-6Al-4V by Zhang et al. [168]
| Scanning strategy | Maximum | Stress reduction compared to island strategy (%) | Thickness (mm) |
|---|---|---|---|
| 45° Rotation | 37.02 | 46.23 | 1 |
| 90° Line Rotation | 40.32 | 40.79 | 1 |
| 0° No rotation | 68.10 | 1 | 1 |
| Island scanning | 68.85 | - | 1 |
| 45° Rotation | 55.75 | 22.19 | 3 |
| Island scanning | 71.65 | - | 3 |
| 0° No rotation | 76.40 | − 6.6 | 3 |
Fig. 21 Scanning strategies and relative stress maps over the investigated mid-plane of the sample used by Strantza et al. [171] in L-PBF fabrication of Ti-6Al-4V: a schematic of the sample, b continuous, c island, d parallel, e island offset by 45°. Four scanning strategies and relative
Fig. 22 Von Mises equivalent stresses in the top surface for the sample tested by Nadammal et al. [178]: a the schematic of the sample, b X-, c Y-, d alternating, and e rotational strategy. The error is $\delta \sigma$ ≤ 50 MPa
| Strategy | Description | Impact on microstructure | Residual stress and stress gradients |
|---|---|---|---|
| X-strategy | Localization of fabrication stages with a short hatch length, melting a small volume of material at a time | Induces significant anisotropy | This leads to relatively high residual stress values and stress gradients |
| Y-strategy | 90º rotation of scanning and hatching directions | Develops a different microstructure, absence of rotated cube component of texture | Implies a unique grain growth pattern that could affect stress |
| Alternating strategy | Alternates between different scanning strategies layer by layer | This leads to microstructure and texture like rotational strategy but with less prominent random grains | There is an intermediate amount of residual stress; the successive layer modifies the effects |
| Rotational strategy | Rotates scanning direction for each successive layer | Creates a microstructure with random grains due to complex thermal fields, disrupting the previous layer's deposition | Generates the least amount of residual stress and symmetric stress gradients |
Table 6 Effect of different scanning strategies on the Inconel 718 via laser powder bed fusion (L-PBF) investigated by Nadammal et al. [178]
| Strategy | Description | Impact on microstructure | Residual stress and stress gradients |
|---|---|---|---|
| X-strategy | Localization of fabrication stages with a short hatch length, melting a small volume of material at a time | Induces significant anisotropy | This leads to relatively high residual stress values and stress gradients |
| Y-strategy | 90º rotation of scanning and hatching directions | Develops a different microstructure, absence of rotated cube component of texture | Implies a unique grain growth pattern that could affect stress |
| Alternating strategy | Alternates between different scanning strategies layer by layer | This leads to microstructure and texture like rotational strategy but with less prominent random grains | There is an intermediate amount of residual stress; the successive layer modifies the effects |
| Rotational strategy | Rotates scanning direction for each successive layer | Creates a microstructure with random grains due to complex thermal fields, disrupting the previous layer's deposition | Generates the least amount of residual stress and symmetric stress gradients |
| Material | Fabrication process | Parameter | Effect | Laser power | Measurement methods | Results | References |
|---|---|---|---|---|---|---|---|
| Ti-6Al-4V | DED | Dwell time | ↑ | Vary (2000 W, 1000 W, 1333 W, 2000 W, 3000 W) | Mitigation of residual stress by allowing more even cooling | [ | |
| Inconel 625, Stainless Steel 316L | DED | Dwell time | ↑ | - | - | Pausing between layers increases bending and stress at top and edges of the part | [ |
| Co-based stellite SF6 alloy | DED | Dwell time | ↑ | 1100 W, 800 W | Micro-analytical test/Optical and scanning electron microscopes | Increasing delay time increases residual stress due to larger temperature gradients | [ |
| Inconel 625 | DED | Dwell time | ↓ | 2000 W | Hole-drilling method | Inconel 625 shows decreased residual stress with longer dwell times due to different responses to heat and phase transitions | [ |
| Ti-6Al-4V | DED | Dwell time | ↑ | 2000 W | Hole-drilling method | Ti-6Al-4V shows increased residual stress with longer dwell times due to different responses to heat and phase transitions | [ |
| Ti-6Al-4V | DED | Dwell time | ↑ | 100 W, 150 W, 200 W | X-ray diffraction | Increased number of parts (dwell time) leads to higher thermal gradient and residual stress | [ |
| Maraging steel | L-PBF | Layer thickness | ↑ | 200 W | Strain Gauges | Increasing layer thickness leads to reduced residual stress due to slower cooling rate | [ |
| tool steel 1.2709 (X3NiCoMoTi 18-9-5) | L-PBF | Layer thickness | ↑ | 200 W | Neutron diffraction | Supported the conclusion that thicker layers reduce residual stress | [ |
| Ti-6Al-4V | L-PBF | Layer thickness | ↑ | 42 W | Bridge curvature method | Found a reduction in residual stress with increased layer thickness | [ |
| Stainless Steel 316L | L-PBF | Layer thickness | ↑ | 100 W | Bridge curvature method | Found a reduction in residual stress with increased layer thickness | [ |
| Inconel 718 | L-PBF | Layer thickness | ↑ | 150 W | X-ray diffraction | Found higher residual stress levels in samples with thicker layers (50 µm) | [ |
| Ti-6Al-4V | L-PBF | Layer thickness | ↑ | 195 W | Surface topography analyses with a laser scanning confocal microscope | Increasing the layer thickness will result in increasing the residual stress | [ |
| Iron-based | L-PBF | Layer thickness | ↑ | 107 W, 200 W | - | Increasing layer thickness resulted in poorer mechanical properties | [ |
| Nickel-chromium alloy | L-PBF | Laser power/Scanning Strategy | ↑ | 400 W | High laser power intensifies heating and cooling rates, influencing residual stress formation | [ | |
| Ti-6Al-4V | L-PBF | Laser power | ↑ | Varying (20 W, 30 W and 50W) | - | An increase in laser power enlarges the molten pool and extends cooling duration, potentially mitigating residual stress | [ |
| Ti-6Al-4V | L-PBF | Laser power | ↓ | 120 W-150 W | - | Increased laser power correlates with heightened residual stress; reduction in power reduces stress levels | [ |
| Stainless Steel 316L | L-PBF | Laser power | Vary power | 160 W-200 W | X-ray diffraction | Higher laser power increases in-depth residual stress: distribution varies with build height | [ |
| Stainless Steel 316L | L-PBF | Laser power | Vary power | 100-350 W | - | Maximum residual stress values escalate with an increase in laser power; lower energy per unit length reduces stresses | [ |
| Stainless Steel 316L | L-PBF | Laser power | Optimize laser power | 300 W | bridge curvature method | An optimal laser power of 300 W effectively minimizes curling angle and controls RS, highlighting laser power as a pivotal factor in RS management | [ |
| AISI 304 Stainless Steel | DED | Scanning speed | ↓ | - | - | Lower scanning speeds and temperature gradients reduce residual stress in SS304 parts | [ |
| JIS SCM440 | L-PBF | Scanning speed | Vary speed | Average power: 50 W Peak power: 3 kW | Beam model | Residual stress decreases with increasing scan speed up to a threshold, beyond which it rises again | [ |
| Stainless Steel 316L | L-PBF | Scanning speed | ↑ | 100 W | - | Melt pool length increases, but width and depth decrease with higher scanning speeds, indicating less cooling time | [ |
| Ti-6Al-4V | L-PBF | Scanning speed | ↑ | 120-150 W | - | Increasing scanning speed reduces residual stress in fabricated layers, highlighting the importance of scanning speed in stress management | [ |
| Stainless Steel 316L | L-PBF | Laser power, Scanning speed | Vary laser power and scanning speed | 160-240 W | X-ray diffraction | Higher laser powers and slower scanning speeds increase residual stress; stripe scanning results in more stress than chessboard scanning | [ |
| Inconel 718 | L-PBF | Laser power, Scanning speed, Hatch space | ↑ | Varied | X-ray diffraction | Increased energy density changes phase composition of IN718, potentially leading to unexpected part growth due to deeper melt pools | [ |
| Stainless Steel 316L | L-PBF | Laser power, Scanning speed | Optimize parameters | - | - | Identifies a safe range for laser power and scanning speed that ensures molten pool stability and higher densification levels | [ |
| Stainless Steel 316L/Ti-6Al-4V/Inconel 718 | LAM | Laser power, Scanning speed | Increase speed, Adjust power | 190-270 W | - | Elevated laser power increases distortion and residual stress; higher scan speeds can mitigate these effects | [ |
| Ti-6Al-4V | L-PBF | Laser power, Scanning speed | Vary power and speed | 100-300 W | X-ray diffraction, Hole-drilling, Contour method | Lower scanning speed and higher laser power reduce residual stress due to slower cooling | [ |
| Stainless Steel 316L | L-PBF | Laser power, Scanning speed | Adjust power and speed | 150 W, 350 W | - | Melt height larger at lower power and higher speed; increasing power and reducing speed enhance melt penetration and width | [ |
| Tungsten | L-PBF | Laser power, scanning speed, hatch spacing | Adjust parameters | 200 W -300 W | - | Surface morphology transitions to dense and flat with increased laser power, indicating densification improvement | [ |
| Aluminum 2024 Alloy | L-PBF | Scanning speed, hatch spacing | Optimize scanning speed and hatch spacing | - | - | Optimal surface quality and reduced porosity achieved with slower scanning speeds and wider hatch spaces (80) | [ |
| Stainless Steel 316L | L-PBF | Scanning speed, Island dimensions | Optimize scanning strategy | 100-400 W | Digital image correlation, Neutron diffraction | Reducing island size and employing shorter scan vectors decrease tensile residual stresses; 45-degree off-axis scanning aligns thermal stresses more favorably, reducing residual stresses | [ |
| Ti-6Al-4V | L-PBF | Laser jump speed | Varying jump speed and scan lengths | 300 W | - | Laser jump speed significantly impacts stress distribution, with optimal speeds reducing stress perpendicular to the scanning direction. Increasing jump speed beyond 1000 mm/s induces contrary effects | [ |
| Stainless Steel 316L | L-PBF | Scan vector length | ↓ | 200 W | X-ray diffraction | Reducing scan vector length from 42 to 18 mm decreases residual stress by over 50% at certain points | [ |
| Ti-6Al-4V | L-PBF | Scan vector length | ↓ | 40 W | - | A 28% reduction in Von Mises stress observed with scan vector length shortened from 3 to 1 mm | [ |
| 82.5 W | |||||||
| - | L-PBF | Scan vector length | ↓ | 1000 W | - | Demonstrated that shorter scan vectors significantly reduce distortion | [ |
| Stainless Steel 316L, Inconel 718 | L-PBF | Scan vector orientation, Island size | Use 45° inclined scanning, Optimize island size | 100-400 | Digital image correlation, Neutron diffraction | Employing a 45° inclined line scanning technique and optimal island sizes reduces deformation and residual stress | [ |
| Stainless Steel 316L | L-PBF | Combination of parameters (Energy density) | Use specific energy density | - | - | Specific energy density achieves over 98% porosity, highlighting its significance in process optimization | [ |
| Stainless Steel 316L | L-PBF | Combination of parameters (Energy density) | ↑ | - | - | Higher minimum energy density required for > 99.5% part density, influencing microstructure and mechanical properties | [ |
| Ti-6Al-4V | L-PBF | Combination of parameters (Energy density) | Adjust energy density | - | Synchrotron X-ray diffraction | Lower energy densities result in higher residual stress, with 53.0 \(\frac{\text{J}}{{\text{mm}}^{3}}\), showing the highest stress, illustrating energy density's impact on residual stress | [ |
| Ti-6Al-4V | Laser Beam Melting | Combination of parameters (Energy density) | Evaluate energy density reliability | - | X-ray diffraction | Parts with the same energy density but different scanning speeds and laser powers showed varying residual stresses, questioning energy density's reliability for comparisons | [ |
| SAE304 stainless steel (as substrate) | L-PBF | Substrate thickness | ↑ | 180 W | 3D scanning of specimens, dimensional deviations were measured using GOM Inspect software by comparing scanned data with original CAD geometry | Higher substrate thickness reduces dimensional deviation and residual stress formation | [ |
| Ti-6Al-4V | DED | Substrate design | Different substrate geometry: solid, hallow, rectangular | 1500 W | Displacement sensor, Thermocouples, data logger | Hallow design resulted in 62% reduction in residual stress | [ |
| Ti-6Al-4V | L-PBF | Dual-laser beam | Auxiliary laser: 30 W, 60 W, 90 W | 120 W | Computational | Post-heating mode with 90 W auxiliary laser power and ∆x = -0.1 mm achieved the lowest RS. Higher auxiliary laser power generally leads to lower RS due to more uniform temperature distribution and reduced cooling rates | [ |
| Stainless steel 316L | L-PBF | Dual-laser beam | Auxiliary laser: 100 W, 200 W at different offsets | 200 W | - | Reducing cooling rate, mitigation of residual stress up to 30%, better surface finish, near full dense component | [ |
| Ti-6Al-4V | L-PBF | Dual-laser beam | Auxiliary laser: 100 W, 200 W, 300 W, 400 W, 500 W | 300 W | X-ray diffraction | Vertical post-heating strategy reduced equivalent stress by 22.55% | [ |
Table 7 Summarizing the researchers’ work on investigation of effect of process parameters on residual stress, molten pool, and mechanical properties of materials
| Material | Fabrication process | Parameter | Effect | Laser power | Measurement methods | Results | References |
|---|---|---|---|---|---|---|---|
| Ti-6Al-4V | DED | Dwell time | ↑ | Vary (2000 W, 1000 W, 1333 W, 2000 W, 3000 W) | Mitigation of residual stress by allowing more even cooling | [ | |
| Inconel 625, Stainless Steel 316L | DED | Dwell time | ↑ | - | - | Pausing between layers increases bending and stress at top and edges of the part | [ |
| Co-based stellite SF6 alloy | DED | Dwell time | ↑ | 1100 W, 800 W | Micro-analytical test/Optical and scanning electron microscopes | Increasing delay time increases residual stress due to larger temperature gradients | [ |
| Inconel 625 | DED | Dwell time | ↓ | 2000 W | Hole-drilling method | Inconel 625 shows decreased residual stress with longer dwell times due to different responses to heat and phase transitions | [ |
| Ti-6Al-4V | DED | Dwell time | ↑ | 2000 W | Hole-drilling method | Ti-6Al-4V shows increased residual stress with longer dwell times due to different responses to heat and phase transitions | [ |
| Ti-6Al-4V | DED | Dwell time | ↑ | 100 W, 150 W, 200 W | X-ray diffraction | Increased number of parts (dwell time) leads to higher thermal gradient and residual stress | [ |
| Maraging steel | L-PBF | Layer thickness | ↑ | 200 W | Strain Gauges | Increasing layer thickness leads to reduced residual stress due to slower cooling rate | [ |
| tool steel 1.2709 (X3NiCoMoTi 18-9-5) | L-PBF | Layer thickness | ↑ | 200 W | Neutron diffraction | Supported the conclusion that thicker layers reduce residual stress | [ |
| Ti-6Al-4V | L-PBF | Layer thickness | ↑ | 42 W | Bridge curvature method | Found a reduction in residual stress with increased layer thickness | [ |
| Stainless Steel 316L | L-PBF | Layer thickness | ↑ | 100 W | Bridge curvature method | Found a reduction in residual stress with increased layer thickness | [ |
| Inconel 718 | L-PBF | Layer thickness | ↑ | 150 W | X-ray diffraction | Found higher residual stress levels in samples with thicker layers (50 µm) | [ |
| Ti-6Al-4V | L-PBF | Layer thickness | ↑ | 195 W | Surface topography analyses with a laser scanning confocal microscope | Increasing the layer thickness will result in increasing the residual stress | [ |
| Iron-based | L-PBF | Layer thickness | ↑ | 107 W, 200 W | - | Increasing layer thickness resulted in poorer mechanical properties | [ |
| Nickel-chromium alloy | L-PBF | Laser power/Scanning Strategy | ↑ | 400 W | High laser power intensifies heating and cooling rates, influencing residual stress formation | [ | |
| Ti-6Al-4V | L-PBF | Laser power | ↑ | Varying (20 W, 30 W and 50W) | - | An increase in laser power enlarges the molten pool and extends cooling duration, potentially mitigating residual stress | [ |
| Ti-6Al-4V | L-PBF | Laser power | ↓ | 120 W-150 W | - | Increased laser power correlates with heightened residual stress; reduction in power reduces stress levels | [ |
| Stainless Steel 316L | L-PBF | Laser power | Vary power | 160 W-200 W | X-ray diffraction | Higher laser power increases in-depth residual stress: distribution varies with build height | [ |
| Stainless Steel 316L | L-PBF | Laser power | Vary power | 100-350 W | - | Maximum residual stress values escalate with an increase in laser power; lower energy per unit length reduces stresses | [ |
| Stainless Steel 316L | L-PBF | Laser power | Optimize laser power | 300 W | bridge curvature method | An optimal laser power of 300 W effectively minimizes curling angle and controls RS, highlighting laser power as a pivotal factor in RS management | [ |
| AISI 304 Stainless Steel | DED | Scanning speed | ↓ | - | - | Lower scanning speeds and temperature gradients reduce residual stress in SS304 parts | [ |
| JIS SCM440 | L-PBF | Scanning speed | Vary speed | Average power: 50 W Peak power: 3 kW | Beam model | Residual stress decreases with increasing scan speed up to a threshold, beyond which it rises again | [ |
| Stainless Steel 316L | L-PBF | Scanning speed | ↑ | 100 W | - | Melt pool length increases, but width and depth decrease with higher scanning speeds, indicating less cooling time | [ |
| Ti-6Al-4V | L-PBF | Scanning speed | ↑ | 120-150 W | - | Increasing scanning speed reduces residual stress in fabricated layers, highlighting the importance of scanning speed in stress management | [ |
| Stainless Steel 316L | L-PBF | Laser power, Scanning speed | Vary laser power and scanning speed | 160-240 W | X-ray diffraction | Higher laser powers and slower scanning speeds increase residual stress; stripe scanning results in more stress than chessboard scanning | [ |
| Inconel 718 | L-PBF | Laser power, Scanning speed, Hatch space | ↑ | Varied | X-ray diffraction | Increased energy density changes phase composition of IN718, potentially leading to unexpected part growth due to deeper melt pools | [ |
| Stainless Steel 316L | L-PBF | Laser power, Scanning speed | Optimize parameters | - | - | Identifies a safe range for laser power and scanning speed that ensures molten pool stability and higher densification levels | [ |
| Stainless Steel 316L/Ti-6Al-4V/Inconel 718 | LAM | Laser power, Scanning speed | Increase speed, Adjust power | 190-270 W | - | Elevated laser power increases distortion and residual stress; higher scan speeds can mitigate these effects | [ |
| Ti-6Al-4V | L-PBF | Laser power, Scanning speed | Vary power and speed | 100-300 W | X-ray diffraction, Hole-drilling, Contour method | Lower scanning speed and higher laser power reduce residual stress due to slower cooling | [ |
| Stainless Steel 316L | L-PBF | Laser power, Scanning speed | Adjust power and speed | 150 W, 350 W | - | Melt height larger at lower power and higher speed; increasing power and reducing speed enhance melt penetration and width | [ |
| Tungsten | L-PBF | Laser power, scanning speed, hatch spacing | Adjust parameters | 200 W -300 W | - | Surface morphology transitions to dense and flat with increased laser power, indicating densification improvement | [ |
| Aluminum 2024 Alloy | L-PBF | Scanning speed, hatch spacing | Optimize scanning speed and hatch spacing | - | - | Optimal surface quality and reduced porosity achieved with slower scanning speeds and wider hatch spaces (80) | [ |
| Stainless Steel 316L | L-PBF | Scanning speed, Island dimensions | Optimize scanning strategy | 100-400 W | Digital image correlation, Neutron diffraction | Reducing island size and employing shorter scan vectors decrease tensile residual stresses; 45-degree off-axis scanning aligns thermal stresses more favorably, reducing residual stresses | [ |
| Ti-6Al-4V | L-PBF | Laser jump speed | Varying jump speed and scan lengths | 300 W | - | Laser jump speed significantly impacts stress distribution, with optimal speeds reducing stress perpendicular to the scanning direction. Increasing jump speed beyond 1000 mm/s induces contrary effects | [ |
| Stainless Steel 316L | L-PBF | Scan vector length | ↓ | 200 W | X-ray diffraction | Reducing scan vector length from 42 to 18 mm decreases residual stress by over 50% at certain points | [ |
| Ti-6Al-4V | L-PBF | Scan vector length | ↓ | 40 W | - | A 28% reduction in Von Mises stress observed with scan vector length shortened from 3 to 1 mm | [ |
| 82.5 W | |||||||
| - | L-PBF | Scan vector length | ↓ | 1000 W | - | Demonstrated that shorter scan vectors significantly reduce distortion | [ |
| Stainless Steel 316L, Inconel 718 | L-PBF | Scan vector orientation, Island size | Use 45° inclined scanning, Optimize island size | 100-400 | Digital image correlation, Neutron diffraction | Employing a 45° inclined line scanning technique and optimal island sizes reduces deformation and residual stress | [ |
| Stainless Steel 316L | L-PBF | Combination of parameters (Energy density) | Use specific energy density | - | - | Specific energy density achieves over 98% porosity, highlighting its significance in process optimization | [ |
| Stainless Steel 316L | L-PBF | Combination of parameters (Energy density) | ↑ | - | - | Higher minimum energy density required for > 99.5% part density, influencing microstructure and mechanical properties | [ |
| Ti-6Al-4V | L-PBF | Combination of parameters (Energy density) | Adjust energy density | - | Synchrotron X-ray diffraction | Lower energy densities result in higher residual stress, with 53.0 \(\frac{\text{J}}{{\text{mm}}^{3}}\), showing the highest stress, illustrating energy density's impact on residual stress | [ |
| Ti-6Al-4V | Laser Beam Melting | Combination of parameters (Energy density) | Evaluate energy density reliability | - | X-ray diffraction | Parts with the same energy density but different scanning speeds and laser powers showed varying residual stresses, questioning energy density's reliability for comparisons | [ |
| SAE304 stainless steel (as substrate) | L-PBF | Substrate thickness | ↑ | 180 W | 3D scanning of specimens, dimensional deviations were measured using GOM Inspect software by comparing scanned data with original CAD geometry | Higher substrate thickness reduces dimensional deviation and residual stress formation | [ |
| Ti-6Al-4V | DED | Substrate design | Different substrate geometry: solid, hallow, rectangular | 1500 W | Displacement sensor, Thermocouples, data logger | Hallow design resulted in 62% reduction in residual stress | [ |
| Ti-6Al-4V | L-PBF | Dual-laser beam | Auxiliary laser: 30 W, 60 W, 90 W | 120 W | Computational | Post-heating mode with 90 W auxiliary laser power and ∆x = -0.1 mm achieved the lowest RS. Higher auxiliary laser power generally leads to lower RS due to more uniform temperature distribution and reduced cooling rates | [ |
| Stainless steel 316L | L-PBF | Dual-laser beam | Auxiliary laser: 100 W, 200 W at different offsets | 200 W | - | Reducing cooling rate, mitigation of residual stress up to 30%, better surface finish, near full dense component | [ |
| Ti-6Al-4V | L-PBF | Dual-laser beam | Auxiliary laser: 100 W, 200 W, 300 W, 400 W, 500 W | 300 W | X-ray diffraction | Vertical post-heating strategy reduced equivalent stress by 22.55% | [ |
| [1] | C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent 4,575,330, 11 Mar 1984. |
| [2] | P. Pradel, Z. Zhu, R. Bibb, J. Moultrie, Complexity is not for free: the impact of component complexity on additive manufacturing build time. Paper presented at Rapid Design, Prototyping & Manufacturing (RDPM2017), Newcastle, 27-28th April 2017. |
| [3] | E. Lannunziata, M.H. Mosallanejad, M. Galati, G. Piscopo, A. Saboori, Acta Metall. Sin.-Engl. Lett. 37, 1611 (2024) |
| [4] | A. Behjat, S. Sanaei, M.H. Mosallanejad, M. Atapour, M. Sheikholeslam, A. Saboori, L. Iuliano, Biomater. Adv. 163, 213928 (2024) |
| [5] | P.H. Lee, H. Chung, S.W. Lee, J. Yoo, J. Ko, Review: dimensional accuracy in additive manufacturing processes. Paper presented at the ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. Detroit, Michigan, USA, 9-13 June 2014. |
| [6] | S. Yang, Y. Tang, Y.F. Zhao, J. Manuf. Process. 20, 444 (2015) |
| [7] | A. Behjat, A. Saboori, M. Galati, L. Iuliano, Intermetallics 175, 108472 (2024) |
| [8] | M.S. Safavi, A. Bordbar-Khiabani, J. Khalil-Allafi, M. Mozafari, L. Visai, J. Manuf. Mater. Process. 6, 65 (2022) |
| [9] | M. Sæterbø, W.D. Solvang, CIRP J. Manuf. Sci. Technol. 45, 113 (2023) |
| [10] | S. Galjaard, S. Hofman, S. Ren, in Advances in Architectural Geometry 2014.ed. by P. Block, J. Knippers, N.J. Mitra, W. Wang (Springer, Cham, 2015), p. 79 |
| [13] | O. Santoliquido, P. Colombo, A. Ortona, J. Eur. Ceram. Soc. 39, 2140 (2019) |
| [14] | M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, J. Alloys Compd. 872, 159567 (2021) |
| [15] | J. Huang, Q. Qin, J. Wang, Processes 8, 1138 (2020) |
| [16] | J. Nandy, H. Sarangi, S.S. Sahoo, Lasers Manuf. Mater. Process. 6, 280 (2019) |
| [17] | M.H. Mosallanejad, R. Ghanavati, A. Behjat, M. Taghian, A. Saboori, L. Iuliano, Matals 14, 425 (2024) |
| [18] | M. Galati, M. Giordano, A. Saboori, S. Defanti, Int. J. Adv. Manuf. Technol. 131, 1223 (2024) |
| [19] | S. Hossein Nedjad, M. Yildiz, A. Saboori, Sci. Technol. Weld. Join. 28, 1 (2023) |
| [20] | A. Abdali, S. Hossein Nedjad, H.H. Zargari, A. Saboori, M. Yildiz, J. Mater. Res. Technol. 29, 5530 (2024) |
| [21] | A. Saboori, G. Marchese, A. Aversa, E. Bassini, F. Mazzucato, A. Valente, M. Lombardi, D. Ugues, S. Biamino, P. Fino, Effect of heat treatment on microstructural evolution of additively manufactured Inconel 718 and cast alloy. Paper presented at Euro PM2019, Maastricht, The Netherlands, 13-17 October 2019. |
| [22] | F. Calignano, M. Pavese, A. Saboori, M. Galati, L. Iuliano, Procedia CIRP 118, 649 (2023) |
| [23] | P. Mofazali, M. Atapour, M. Nakamura, M. Sheikholeslam, M. Galati, A. Saboori, Int. J. Biol. Macromol. 265, 131125 (2024) |
| [24] | A. Dagkolu, I. Gokdag, O. Yilmaz, Procedia Manuf. 54, 238 (2021) |
| [25] | M.R. Bandekhoda, M.H. Mosallanejad, M. Atapour, L. Iuliano, A. Saboori, Met. Mater. Int. 30, 114 (2024) |
| [26] | M. Salmi, K.S. Paloheimo, J. Tuomi, J. Wolff, A. Mäkitie, J. Cranio-Maxillofac. Surg. 41, 603 (2013) |
| [27] | A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, P. Fino, Appl. Sci. 9, 3316 (2019) |
| [28] | R. Leal, F.M. Barreiros, L. Alves, F. Romeiro, J.C. Vasco, M. Santos, C. Marto, Int. J. Adv. Manuf. Technol. 92, 1671 (2017) |
| [29] | M. Taghian, M.H. Mosallanejad, E. Lannunziata, G. Del Greco, L. Iuliano, A. Saboori, J. Mater. Res. Technol. 27, 6484 (2023) |
| [30] | M. Tebianian, S. Aghaie, N.S.R. Jafari, S.R.E. Hosseini, A.B. Pereira, F.A.O. Fernandes, M. Farbakhti, C. Chen, Y. Huo, Materials 16, 7514 (2023) |
| [31] | A. Behjat, M. Shamanian, A. Taherizadeh, M. Noori, E. Lannunziata, L. Iuliano, A. Saboori, Mater. Today Proc. 70, 188 (2022) |
| [32] | I. Aiza, C. Baldi, F.M. de la Vega, S. Sebastiani, N.E. Veronese, M. Yousefi, M.H. Mosallanejad, E. Maleki, M. Guagliano, L. Iuliano, A. Saboori, S. Bagherifard, Prog. Mater. Sci. 147, 101357 (2025) |
| [33] | A. Abdi, M.S. Salehi, S.A. Fatemi, L. Iuliano, A. Saboori, Int. J. Adv. Manuf. Technol. 130, 755 (2024) |
| [34] | J. Boban, P.M. Abhilash, A. Ahmed, M.A. Rahman in Comprehensive Materials Processing. ed. by S. Hashmi (Elsevier, Oxford, 2024), p. 231 |
| [35] | M. Kasprowicz, A. Pawlak, P. Jurkowski, T. Kurzynowski, Arch. Civ. Mech. Eng. 23, 211 (2023) |
| [36] | E.A. Patterson, J. Lambros, R. Magana-Carranza, C.J. Sutcliffe, Int. J. Adv. Manuf. Technol. 123, 1845 (2022) |
| [37] | C. Bellini, F. Berto, V. Di Cocco, F. Iacoviello, L.P. Mocanu, N. Razavi, Procedia Struct. Integr. 33, 498 (2021) |
| [38] | A. Behjat, M. Shamanian, A. Taherizadeh, E. Lannunziata, S. Bagherifard, E. Gadalińska, A. Saboori, L. Iuliano, J. Mater. Res. Technol. 23, 3294 (2023) |
| [39] | T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92, 112 (2018) |
| [40] | A. Behjat, E. Lannuzziata, E. Gadalińska, L. Iuliano, A. Saboori, Procedia CIRP 118, 771 (2023) |
| [41] | J. Li, S. Wang, Int. J. Adv. Manuf. Technol. 89, 997 (2017) |
| [42] | M. Kaess, M. Werz, S. Weihe, Materials 16, 2321 (2023) |
| [43] | J.V. Gordon, C.V. Haden, H.F. Nied, R.P. Vinci, D.G. Harlow, Mater. Sci. Eng. A 724, 431 (2018) |
| [44] | H. Vemanaboina, P. Ferro, B.S. Babu, E. Gundabattini, K. Kumar, F. Berto, Adv. Mater. Sci. Eng. 2022, 5687407 (2022) |
| [45] | S. Srivastava, R.K. Garg, A. Sachdeva, V.S. Sharma, J. Manuf. Sci. Eng. 145, 021008 (2022) |
| [46] | W.J. Lai, A. Ojha, Z. Li, C. Engler-Pinto, X. Su, Prog. Addit. Manuf. 6, 375 (2021) |
| [47] | K. Zeng, N. Patil, H. Gu, H. Gong, D. Pal, Layer by layer validation of geometrical accuracy in additive manufacturing processes. Paper presented at the 24th International Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin, USA, 12-14 August 2013. |
| [48] | S. Liu, Y.C. Shin, Mater. Des. 164, 107552 (2019) |
| [49] | I. van Zyl, I. Yadroitsava, I. Yadroitsev, S. Afr, J. Ind. Eng. 27, 134 (2016) |
| [50] | M.F. Zaeh, G. Branner, Prod. Eng. 4, 35 (2010) |
| [51] | L. Parry, I.A. Ashcroft, R.D. Wildman, Addit. Manuf. 12, 1 (2016) |
| [52] | H. Ali, L. Ma, H. Ghadbeigi, K. Mumtaz, Mater. Sci. Eng. A 695, 211 (2017) |
| [53] | A.H. Maamoun, M.A. Elbestawi, S.C. Veldhuis, J. Manuf. Mater. Process. 2, 40 (2018) |
| [54] | J.L. Bartlett, B.P. Croom, J. Burdick, D. Henkel, X. Li, Addit. Manuf. 22, 1 (2018) |
| [55] | D. Hu, N. Grilli, L. Wang, M. Yang, W. Yan, J. Mech. Phys. Solids 161, 104822 (2022) |
| [56] | A. Ulbricht, S.J. Altenburg, M. Sprengel, K. Sommer, G. Mohr, T. Fritsch, T. Mishurova, I. Serrano-Munoz, A. Evans, M. Hofmann, G. Bruno, Matals 10, 1234 (2020) |
| [57] | M.H. Mosallanejad, H. Gashmard, M. Javanbakht, B. Niroumand, A. Saboori, Addit. Manuf. Lett. 10, 100214 (2024) |
| [58] | A. Saboori, G. Piscopo, M. Lai, A. Salmi, S. Biamino, Mater. Sci. Eng. A 780, 139179 (2020) |
| [59] | T.T. Wohlers, T. Caffrey, Wohlers Report 2014: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report (Wohlers Associates, Fort Collins, 2014) |
| [60] | W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, P.D. Zavattieri, Comput. Des. 69, 65 (2015) |
| [61] | P. Rangaswamy, M.L. Griffith, M.B. Prime, T.M. Holden, R.B. Rogge, J.M. Edwards, R.J. Sebring, Mater. Sci. Eng. A 399, 72 (2005) |
| [62] | A.L. Vyatskikh, X. Wang, J. Haley, B. Zheng, L. Valdevit, E.J. Lavernia, J.M. Schoenung, Mater. Sci. Eng. A 871, 144845 (2023) |
| [63] |
J.L. Bartlett, X. Li, Addit. Manuf. 27, 131 (2019)
DOI |
| [64] | Y. Liu, Y. Yang,D. Wang, Int. J. Adv. Manuf. Technol. 87, 647 (2016) |
| [65] | G.R. Kumar, A. Muralidharan, G. Rajyalakshmi,S. Swaroop, Int. J. Adv. Manuf. Technol. 114, 1395 (2021) |
| [66] | V.Y. Gertsman, S.M. Bruemmer, Acta Mater. 49, 1589 (2001) |
| [67] | P.J. Withers, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 17, 355 (2001) |
| [68] | L. Pintschovius, V. Jung, E. Macherauch, O. Vöhringer, Mater. Sci. Eng. 61, 43 (1983) |
| [69] | C.J. Lammi, D.A. Lados, Metall. Mater. Trans. A 43, 87 (2012) |
| [70] | M. Dutta, Dissertation, The Open University (UK), 2000. |
| [71] | J.D. Almer, J.B. Cohen, B. Moran, Mater. Sci. Eng. A 284, 268 (2000) |
| [72] | A. Lodh, K. Thool, I. Samajdar, Trans. Indian Inst. Met. 75, 983 (2022) |
| [73] | G.S. Schajer (ed.), Practical Residual Stress Measurement Methods (Wiley, Wiley, 2013) |
| [74] | C. Lachmann, T.H. Nitschke-Pagel, H. Wohlfahrt, Nondestructive characterization of residual stress relaxation and fatigue processes in cyclically loaded welded joints. Paper presented at the 6th International Conference on Residual Stress, Oxford, UK, 10-12 July 2000 |
| [75] | X. Zheng, J. Li, Y. Zhou, Acta Mater. 52, 3313 (2004) |
| [76] | I. Robinson, P. Eng, R. Schuster, Acta Phys. Pol. A 86, 513 (1994) |
| [77] | A. Mishchenko, L. Wu, V.K. da Silva, A. Scotti, J. Braz. Soc. Mech. Sci. Eng. 40, 94 (2018) |
| [78] | P.S. Prevéy, Current applications of X-ray diffraction residual stress measurement, in Developments in Materials Characterization Technologies (ASM International, Materials Park, OH, 1996), p. 103 |
| [79] | G.A. Webster, R.C. Wimpory, J. Mater. Process. Technol. 117, 395 (2001) |
| [80] | J.L. Finney, Acta Crystallogr. B 51, 447 (1995) |
| [81] | H.J. Bunge, Text. Stress Microstruct. 10, 265 (1989) |
| [82] | C. Casavola, L.S. Campanelli, C. Pappalettere, Experimental Analysis of Residual Stresses in the Selective Laser Melting Process. Paper presented at the XIth International Congress and Exposition, Orlando, Florida, 2-5 June 2008 |
| [83] | A. Giri, M.M. Mahapatra, Measurement 106, 152 (2017) |
| [84] | E. Valentini, D. Vangi, Weld. Int. 8, 532 (1994) |
| [85] | P. Vourna, A. Ktena, P. Tsarabaris, E. Hristoforou, Matals 8, 592 (2018) |
| [86] | S.M. Zadvorkin, L.S. Goruleva, J. Mach. Manuf. Reliab. 50, 118 (2021) |
| [87] | S.I. Tiitto, U.S. Patent 4,634,976, 6 Jan 1987. |
| [88] | H. Singh, M.S. Niranjan, R. Wattal, J. Eng. Res. ICAPIE Spec. Issue, 82 (2022). |
| [89] | Q. He, X.K. Gao, C.J. Zhou, J. Phys. Conf. Ser. 2460, 012054 (2023) |
| [90] | A. Ebrahimi, M. Bayat, E. Norouzi, Russ. J. Nondestruct. Test. 57, 669 (2021) |
| [91] | A. Irina, F. Alexey, B. Vladimir, I. Belyakov, Acoustoelasticity method with thermo-optical generation of ultrasonic vibrations for control of residual stresses in special pipes. Paper presented at2022 International Conference on Information, Control, and Communication Technologies (ICCT), Astrakhan, Russia, 3-7 October 2022. |
| [92] | N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Mater. Des. 35, 572 (2012) |
| [93] | J. Guo, H. Fu, B. Pan, R. Kang, Chin. J. Aeronaut. 34, 54 (2021) |
| [94] | D.J. Corbin, A.R. Nassar, E.W. Reutzel, A.M. Beese, P. Michaleris, J. Manuf. Sci. Eng. 140, 061009 (2018) |
| [95] | X. Lu, X. Lin, M. Chiumenti, M. Cervera, Y. Hu, X. Ji, L. Ma, H. Yang, W. Huang, Addit. Manuf. 26, 166 (2019) |
| [96] | A. Vasinonta, J.L. Beuth, M. Griffith, J. Manuf. Sci. Eng. 129, 101 (2006) |
| [97] | M.P. Hong, Y.S. Kim, Materials 13, 5516 (2020) |
| [98] | T. Mishurova, S. Cabeza, K. Artzt, J. Haubrich, M. Klaus, C. Genzel, G. Requena, G. Bruno, Materials 10, 348 (2017) |
| [99] | M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, F. Abe, CIRP Ann. 53, 195 (2004) |
| [100] | H. Ali, H. Ghadbeigi, K. Mumtaz, Mater. Sci. Eng. A 712, 175 (2018) |
| [101] | S. Waqar, K. Guo, J. Sun, Opt. Laser Technol. 149, 107806 (2022) |
| [102] | Q. Chao, S. Thomas, N. Birbilis, P. Cizek, P.D. Hodgson, D. Fabijanic, Mater. Sci. Eng. A 821, 141611 (2021) |
| [103] | H.V. Atkinson, S. Davies, Metall. Mater. Trans. A 31, 2981 (2000) |
| [104] | L.A. Godlewski, X. Su, T.M. Pollock, J.E. Allison, Metall. Mater. Trans. A 44, 4809 (2013) |
| [105] | S. Das, M. Wohlert, J.J. Beaman, D.L. Bourell, JOM 50, 17 (1998) |
| [106] | V. Cruz, Q. Chao, N. Birbilis, D. Fabijanic, P.D. Hodgson, S. Thomas, Corros. Sci. 164, 108314 (2020) |
| [107] | R. Husson, C. Baudouin, R. Bigot,E. Sura, Int. J. Adv. Manuf. Technol. 72, 1455 (2014) |
| [108] | S.Y. Kwak, H.Y. Hwang, J. Comput. Des. Eng. 5, 137 (2018) |
| [109] | S. Santa-aho, M. Kiviluoma, T. Jokiaho, T. Gundgire, M. Honkanen, M. Lindgren, M. Vippola, Matals 11, 182 (2021) |
| [110] | M. Chimmat, D. Srinivasan, Procedia Struct. Integr. 14, 746 (2019) |
| [111] | X. Zhang, M.D. McMurtrey, L. Wang, R.C. O’Brien, C.-H. Shiau, Y. Wang, R. Scott, Y. Ren, C. Sun,JOM 72, 4167 (2020) |
| [112] | X. Wang, K. Chou, J. Manuf. Process. 48, 154 (2019) |
| [113] | C. Pei, D. Shi, H. Yuan, H. Li, Mater. Sci. Eng. A 759, 278 (2019) |
| [114] | Ó. Teixeira, F.J.G. Silva,E. Atzeni, Int. J. Adv. Manuf. Technol. 113, 3139 (2021) |
| [115] | P. Bian, C. Wang, K. Xu, F. Ye, Y. Zhang, L. Li, Materials 15, 1658 (2022) |
| [116] | V. Manvatkar, A. De, T. DebRoy, Mater. Sci. Technol. 31, 924 (2015) |
| [117] | F. Brückner, D. Lepski, E. Beyer, J. Therm. Spray Technol. 16, 355 (2007) |
| [118] | X. Lu, M. Chiumenti, M. Cervera, G. Zhang, X. Lin, Eng. Comput. 38, 4771 (2022) |
| [119] | R. Jendrzejewski, G. Śliwiński, Appl. Surf. Sci. 254, 921 (2007) |
| [120] | E.R. Denlinger, J.C. Heigel, P. Michaleris, T.A. Palmer, J. Mater. Process. Technol. 215, 123 (2015) |
| [121] | R. Li, J. Xiong, Rapid Prototyp. J. 25, 1433 (2019) |
| [122] | N. Dumontet, B. Malard, B. Viguier, Study on the origins of residual stresses in Ti-6Al-4V processed by additive manufacturing. Paper presented at the 14th World Conference on Titanium (Ti 2019), MATEC Web of Conferences, Nantes, France, 10-14 June 2019 |
| [123] | S.Y. Ivanov, A. Vildanov, P.A. Golovin, A. Artinov, I. Karpov, Key Eng. Mater. 822, 445 (2019) |
| [124] | L. van Belle, G. Vansteenkiste, J.C. Boyer, Key Eng. Mater. 554-557, 1828 (2013) |
| [125] | J.P. Kruth, J. Deckers, E. Yasa, R. Wauthlé, Proc. Inst. Mech. Eng. B J. Eng. Manuf. 226, 980 (2012) |
| [126] | E. Mirkoohi, H.C. Tran, Y.L. Lo, Y.C. Chang, H.Y. Lin, S. Y. Liang, Effect of powder layer thickness on residual stress in laser powder bed fusion of IN718. Paper presented at the ASME2022 17th International Manufacturing Science and Engineering Conference (MSEC2022), West Lafayette, Indiana, USA, 27 June-1 July 2022. |
| [127] | H. Ali, H. Ghadbeigi, K. Mumtaz, J. Mater. Eng. Perform. 27, 4059 (2018) |
| [128] | G. Feng, H. Wang, Y. Wang, D. Deng, J. Zhang, Crystals 12, 803 (2022) |
| [129] | J.C. Diaz, K. Watanabe, A. Rubio, A. De La Cruz, D. Godinez, S.T. Nabil, L.E. Murr, R.B. Wicker, E. Arrieta, F. Medina, Materials 15, 7767 (2022) |
| [130] | J. Delgado, J. Ciurana,C.A. Rodríguez, Int. J. Adv. Manuf. Technol. 60, 601 (2012) |
| [131] | J. Schröder, A. Evans, T. Mishurova, A. Ulbricht, M. Sprengel, I. Serrano-Munoz, T. Fritsch, A. Kromm, T. Kannengießer, G. Bruno, Metals 11, 1830 (2021) |
| [132] | N. Ahmed, I. Barsoum, G. Haidemenopoulos, R.K.A. Al-Rub, J. Manuf. Process. 75, 415 (2022) |
| [133] |
N.C. Levkulich, S.L. Semiatin, J.E. Gockel, J.R. Middendorf, A.T. DeWald, N.W. Klingbeil, Addit. Manuf. 28, 475 (2019)
DOI |
| [134] | A.M. Jonaet, H.S. Park,C.M. Lee, Int. J. Adv. Manuf. Technol. 113, 2227 (2021) |
| [135] | P. Bian, J. Shi, Y. Liu, Y. Xie, Opt. Laser Technol. 132, 106477 (2020) |
| [136] | Y. Wang, C. Chen, Y. Qi, H. Zhu, Addit. Manuf. 71, 103565 (2023) |
| [137] | G. Vastola, G. Zhang, Q.X. Pei, Y.W. Zhang, Addit. Manuf. 12, 231 (2016) |
| [138] | T. Mukherjee, V. Manvatkar, A. De, T. DebRoy, Scr. Mater. 127, 79 (2017) |
| [139] | I. Yadroitsev, I. Yadroitsava, P. Bertrand, I. Smurov, Rapid Prototyp. J. 18, 201 (2012) |
| [140] | A. Hussein, L. Hao, C. Yan, R. Everson, Mater. Des. 52, 638 (2013) |
| [141] | L.E. Loh, C.K. Chua, W.Y. Yeong, J. Song, M. Mapar, S.L. Sing, Z.H. Liu, D.Q. Zhang, Int. J. Heat Mass Transf. 80, 288 (2015) |
| [142] | K. Cho, M. Sakata, H.Y. Yasuda, M. Todai, M. Ueda, M. Takeyama, T. Nakano, Mater. Trans. 64, 1112 (2023) |
| [143] | J. Li, Y. Wu, B. Zhou, Z. Wei, Materials 14, 165 (2021) |
| [144] | M.A. Pekok, R. Setchi, M. Ryan, Q. Han,D. Gu, Int. J. Adv. Manuf. Technol. 112, 175 (2021) |
| [145] | D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Mater. 60, 3849 (2012) |
| [146] | Q. Jia, D. Gu, J. Alloys Compd. 585, 713 (2014) |
| [147] | L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, T.B. Sercombe, Scr. Mater. 65, 21 (2011) |
| [148] | A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, W.E. King, Metall. Mater. Trans. A 45, 6260 (2014) |
| [149] | H. Zhao, C. Gao, Z. Wang, Q. Wang, C. Liu,Y. Zhan, Int. J. Adv. Manuf. Technol. 129, 1443 (2023) |
| [150] | J.F. Li, Z.Y. Wei, I.O.P. Conf, Ser. Mater. Sci. Eng. 269, 012026 (2017) |
| [151] | B. Vandenbroucke, J.P. Kruth, Rapid Prototyp. J. 13, 196 (2007) |
| [152] | E. Lannunziata, N. Zapparoli, L. Iuliano, A. Saboori, Procedia CIRP 118, 688 (2023) |
| [153] | H. Meier, C. Haberland, Materwiss. Werksttech. 39, 665 (2008) |
| [154] | T. Simson, A. Emmel, A. Dwars, J. Böhm, Addit. Manuf. 17, 183 (2017) |
| [155] | B.B. Ravichander, A. Amerinatanzi, N. Shayesteh Moghaddam, Matals 10, 1180 (2020) |
| [156] | B.K. Panda, S. Sahoo, IOP Conf. Ser. Mater. Sci. Eng. 338, 012030 (2018) |
| [157] | Y.S. Huo, C. Hong, H.X. Li, P. Liu, Mater. Res. 23, e20200176 (2020) |
| [158] | A. Malmelöv, C.J. Hassila, M. Fisk, U. Wiklund, A. Lundbäck, Mater. Des. 216, 110548 (2022) |
| [159] | E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, J. Mater. Process. Technol. 249, 255 (2017) |
| [160] | G.B. Bang, W.R. Kim, H.K. Kim, H.K. Park, G.H. Kim, S.K. Hyun, O. Kwon, H.G. Kim, Mater. Des. 197, 109221 (2021) |
| [161] | T. Mishurova, K. Artzt, S. Cabeza, G. Requena, G. Bruno, J. Haubrich, Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting. Paper presented at the 12th European Conference on Non-Destructive Testing (ECNDT 2018), Gothenburg, Sweden, 11-15 June 2018. |
| [162] | Y. Jia, C. Zeng, J. Xue, Eng. Res. Express 5, 015041 (2023) |
| [163] | R. Li, G. Wang, X. Zhao, F. Dai, C. Huang, M. Zhang, X. Chen, H. Song, H. Zhang, Addit. Manuf. 46, 102203 (2021) |
| [164] | B. Cheng, S. Shrestha, K. Chou, Addit. Manuf. 12, 240 (2016) |
| [165] | W. Zhang, M. Tong, N.M. Harrison, Addit. Manuf. 36, 101507 (2020) |
| [166] | S. Zou, H. Xiao, F. Ye, Z. Li, W. Tang, F. Zhu, C. Chen, C. Zhu, Results Phys. 16, 103005 (2020) |
| [167] |
Y. Zhan, H. Xu, W. Du, C. Liu, Exp. Mech. 62, 563 (2022)
DOI |
| [168] | W. Zhang, D. Guo, L. Wang, C.M. Davies, W. Mirihanage, M. Tong, N.M. Harrison, Addit. Manuf. 61, 103275 (2023) |
| [169] |
I. Serrano-Munoz, T. Mishurova, T. Thiede, M. Sprengel, A. Kromm, N. Nadammal, G. Nolze, R. Saliwan-Neumann, A. Evans, G. Bruno, Sci. Rep. 10, 14645 (2020)
DOI PMID |
| [170] | L. Mugwagwa, D. Dimitrov, S. Matope,I. Yadroitsev, Int. J. Adv. Manuf. Technol. 102, 2441 (2019) |
| [171] | M. Strantza, R.K. Ganeriwala, B. Clausen, T.Q. Phan, L.E. Levine, D.C. Pagan, J.P.C. Ruff, W.E. King, N.S. Johnson, R.M. Martinez, V. Anghel, G. Rafailov, D.W. Brown, Addit. Manuf. 45, 102003 (2021) |
| [172] | I. Yadroitsev, I. Yadroitsava, Virtual Phys. Prototyp 10, 67 (2015) |
| [173] | G. Bi, C.N. Sun, A. Gasser, J. Mater. Process. Technol. 213, 463 (2013) |
| [174] | Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie, J. Lin, Opt. Laser Technol. 75, 197 (2015) |
| [175] | J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, J. Mater. Process. Technol. 149, 616 (2004) |
| [176] | I.K. Sarma, N. Selvaraj, A. Kumar, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 237, 1093 (2022) |
| [177] | J. Robinson, I. Ashton, P. Fox, E. Jones, C. Sutcliffe, Addit. Manuf. 23, 13 (2018) |
| [178] | N. Nadammal, T. Mishurova, T. Fritsch, I. Serrano-Munoz, A. Kromm, C. Haberland, P.D. Portella, G. Bruno, Addit. Manuf. 38, 101792 (2021) |
| [179] | J. Hajnys, M. Pagáč, J. Měsíček, J. Petru, M. Król, Materials 13, 1659 (2020) |
| [180] | X. Lu, M. Chiumenti, M. Cervera, J. Li, X. Lin, L. Ma, G. Zhang, E. Liang, Mater. Des. 202, 109525 (2021) |
| [181] | O. Gülcan, K. Günaydın, E. Kundakcıoğlu, A. Tamer, Mater. Res. Express. 11, 076513 (2024) |
| [182] | X. Lu, W. Zhang, M. Chiumenti, M. Cervera, B. Gillham, P. Yu, S. Yin, X. Lin, R.P. Babu, R. Lupoi, Addit. Manuf. 59, 103149 (2022) |
| [183] | C. Chen, Z. Xiao, W. Zhang, Y. Wang, H. Zhu, Effect of laser jump speed on temperature distribution and thermal stress in laser powder bed fusion. Opt. Laser Technol. 142, 107275 (2021) |
| [184] | P. Mercelis, J. Kruth, Rapid Prototyp. J. 12, 254 (2006) |
| [185] | Y. Luo, M. Wang, J. Tu, Y. Jiang, S. Jiao, Int. J. Miner. Metall. Mater. 28, 1844 (2021) |
| [186] | W. Zhang, W.M. Abbott, A. Sasnauskas, R. Lupoi, Matals 12, 420 (2022) |
| [187] | T. Heeling, K. Wegener, Addit. Manuf. 22, 334 (2018) |
| [188] | M. Matsumoto, M. Shiomi, K. Osakada, F. Abe, Int. J. Mach. Tools Manuf 42, 61 (2002) |
| [189] | I. A. Roberts, Dissertation, University of Wolverhampton, 2012 |
| [190] | I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, J. Alloys Compd. 583, 404 (2014) |
| [191] | J. Liu, J. Ye, D. Silva Izquierdo, A. Vinel, N. Shamsaei, S. Shao, J. Intell. Manuf. 34, 3249 (2023) |
| [192] | C. Kamath, Int. J. Adv. Manuf. Technol. 86, 1659 (2016) |
| [193] | G. Tapia, S. Khairallah, M. Matthews, W.E. King,A. Elwany, Int. J. Adv. Manuf. Technol. 94, 3591 (2018) |
| [194] | S. Thakur, G. Talla, P. Verma, Eng. Res. Express. 3, 045043 (2021) |
| [195] | S.H. Wu, U. Tariq, R. Joy, T. Sparks, A. Flood, F. Liou, Materials 17, 1498 (2024) |
| [196] | M. Woo, H. Ki, Int. Commun. Heat Mass Transf. 155, 107536 (2024) |
| [1] | Huihui Wang, Qianying Guo, Chong Li, Lei Cui, Yiming Huang, Yongchang Liu. Effect of Ti2AlC Addition on the Microstructure and Mechanical Property of Additive Manufactured Inconel 718 Alloys via Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1481-1498. |
| [2] | Yuanyuan Feng, Jianchao Pang, Xiaoyuan Teng, Chenglu Zou, Jingjing Liang, Yuping Zhu, Shouxin Li, Jinguo Li, Zhefeng Zhang. Quasi-in-situ EBSD Study on the Microstructure and Tensile Properties of Selective Laser Melted Inconel 718 Alloy Processed by Different Heat Treatments [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1499-1512. |
| [3] | Huimin Yang, Kun Yang, Guobing Wei, Rongguang Li. Optimization of Surface Layer Properties of Mg-9Li-1Zn Alloy by Ultrasonic Surface Rolling Process and its Impact on Corrosion Behavior [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1421-1435. |
| [4] | Dongchao Li, Fen Zhang, Lanyue Cui, Yueling Guo, Rongchang Zeng. Accelerated Corrosion Rate of Wire Arc Additive Manufacturing of AZ91D Magnesium Alloy: The Formation of Nano-scaled AlMn Phase [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1069-1082. |
| [5] | Yunlu Jiang, Lihui Wu, Dingrui Ni, Hongbo Zhao, Xu Han, Peng Xue, Bolv Xiao, Zongyi Ma. Effect of Post Weld Heat Treatment on Residual Stress and Mechanical Properties of 106 mm Thick TC4 Titanium Alloy Electron Beam Welded Joints [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1083-1094. |
| [6] | Amir Behjat, Saber Sanaei, Mohammad Hossein Mosallanejad, Masoud Atapour, Abdollah Saboori. Electrochemical Behavior of Electron Beam Powder Bed Fused Ti536 Alloy under Simulated Inflammatory Conditions [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 969-980. |
| [7] | X. X. Zhang, E. Walz, A. Langebeck, J. Rebelo Kornmeier, A. Kriele, V. Luzin, M. Adveev, A. Bohlen, M. Hofmann. Macroscopic and Microscopic Residual Stresses in Nickel-Aluminum Bronze Matrix Composite Surface Deposits Manufactured via Laser Melt Injection [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 570-586. |
| [8] | Haijian Liu, Tianle Li, Xifeng Li, Huiping Wu, Zhiqiang Wang, Jun Chen. Strength Optimization of Diffusion-Bonded Ti2AlNb Alloy by Post-Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 614-626. |
| [9] | Chao Hai, Yuetong Zhu, Cuiwei Du, Xiaogang Li. Effect of Retained Austenite on the Corrosion Resistance of High-Strength Low-Carbon Steel in Artificial Seawater [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 657-671. |
| [10] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. |
| [11] | Lingxiao Du, Hang Ding, Yun Xie, Li Ji, Wanbin Chen, Yunze Xu. Effect of Laser Energy Density on Microstructures and Properties of Additively Manufactured AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 233-244. |
| [12] | Yi-Ming Chen, Jian-Lin Lu, Dong Yu, Hua-Yong Ren, Xiao-Bin Hu, Lei Wang, Zhi-Jun Wang, Jun-Jie Li, Jin-Cheng Wang. Accurate Identification of High Relative Density in Laser-Powder Bed Fusion Across Materials Using a Machine Learning Model with Dimensionless Parameters [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1645-1656. |
| [13] | Noa Lulu-Bitton, Nissim U. Navi, Noam Eliaz. Tensile Properties of Electrochemically Hydrogenated As-Built, Hot Isostatic Pressed and Heat-Treated Electron Beam Melted Ti-6Al-4V Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1711-1718. |
| [14] | Yuan Jiang, Baizhi Liang, Shewei Xin, Lei Shi, Siyuan Zhang, Kai Zhang, Hao Wang, Yi Yang, Lai-Chang Zhang. Cyclic Heat Treatment Induced Spheroidization of α Phase in Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1827-1838. |
| [15] | Erika Lannunziata, Mohammad Hossein Mosallanejad, Manuela Galati, Gabriele Piscopo, Abdollah Saboori. Analyzing the Interplay of Sintering Conditions on Microstructure and Hardness in Indirect Additive Manufacturing of 17-4PH Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1611-1620. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
