Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (10): 1809-1826.DOI: 10.1007/s40195-025-01889-z
Nanfu Li1,2, Bin Wu1,2(
), Jiazhen Wang3, Ming Shu3, Yusheng Zhang1,2, Yifeng Li4, Jianqiu Wang1,2,5, En-Hou Han2,5, Hongliang Ming1,2(
)
Received:2025-01-19
Revised:2025-02-27
Accepted:2025-03-19
Online:2025-06-16
Published:2025-06-16
Contact:
Bin Wu, Hongliang Ming
Nanfu Li, Bin Wu, Jiazhen Wang, Ming Shu, Yusheng Zhang, Yifeng Li, Jianqiu Wang, En-Hou Han, Hongliang Ming. Corrosion Behavior of 304LN Stainless Steel in High-Temperature Supercritical Carbon Dioxide: Oxidation and Carburization[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1809-1826.
Add to citation manager EndNote|Ris|BibTeX
| Cr | Ni | Mn | Si | P | C | S | N | Mo | Fe |
|---|---|---|---|---|---|---|---|---|---|
| 18.45 | 8.30 | 1.59 | 0.47 | 0.02 | 0.05 | 0.004 | 0.057 | - | Bal. |
Table 1 Chemical compositions of 304LN stainless steels (wt%)
| Cr | Ni | Mn | Si | P | C | S | N | Mo | Fe |
|---|---|---|---|---|---|---|---|---|---|
| 18.45 | 8.30 | 1.59 | 0.47 | 0.02 | 0.05 | 0.004 | 0.057 | - | Bal. |
Fig. 3 Corrosion kinetics curve of 304LN stainless steel exposed to 650 °C-15 MPa SC-CO2 for 1000 h: relationship between a weight gain (Δω) and time (t), and b weight gain squared ((Δω)2) and time (t)
Fig. 4 Surface and cross-sectional morphologies of the oxide film on 304LN stainless steel corroded for 1000 h in SC-CO2 at 650 °C and 15 MPa: a1 low-magnification images of the oxide film surface morphology, a2 the localized magnification and compositional analysis of the boxed region in a1, b1 low-magnification images of the cross-sectional morphology of the oxide film, and b2 the localized magnification of the boxed region in a
Fig. 5 SIMS analysis results of the uniformly corroded area of 304LN: a SIMS results showing the distribution of elements; b enlarged view of the boxed region in a; c 3D results
Fig. 8 TEM characterization of the uniformly corroded area of 304LN stainless steel: a STEM image of the oxide film cross section, b high-magnification STEM image of the region marked box in a, c high-magnification STEM image of the region indicated as c in b, c1, c2 HRTEM and SAED images of the region marked in c, d, d1 HRTEM and SAED patterns of the region marked in b as d, and d2 HRTEM image of the SiO2 layer indicated in d
Fig. 9 TEM characterization of the carbon diffusion region in 304LN: a STEM image of the cross section of the oxide film and matrix; b high-magnification STEM image of the carbon diffusion region marked in the boxed area in a; c HRTEM image of the region marked as c in b; d SAED pattern of the area marked in c
| Materials | Time (h) | Temperature (°C) | Pressure (MPa) | Corrosion mass gain (mg/cm2) | Corrosion products | References |
|---|---|---|---|---|---|---|
| 304LN | 1000 | 650 | 15 | 0.055 | Outer Cr2O3 layer Intermediate (Mn, Cr)-O Inner SiO2 layer | This work |
| T91, SS316, SS308, Alloy 800 | 310 | 550 | 25 | T91: 2.7 SS316: 0.037 SS308: 0.016 Alloy 800: 0.042 | T91: Fe-O + Fe-Cr-O spinel; SS316/SS308/Alloy 800: Fe-Cr-Si-rich oxide layer | [ |
| T91, TP347HFG, Alloy 617 | 500 | 650 | 15 | T91: 5 TP347HFG: 0.022 Alloy 617: 0.025 | T91: Fe3O4 + (Fe, Cr)3O4 TP347HFG: Cr2O3 layer alloy 617: Cr2O3 layer | [ |
| 316SS, 310SS, Alloy 800H | 3000 | 650 | 20 | 316SS: 1.8 310SS: 0.2 Alloy 800H: 0.19 | 316SS:Fe-O, Fe-Cr2O4 310SS: Cr2O3, Cr1.3Fe0.7O3, Fe-Cr2O4 Alloy 800H: Fe3O4, Fe-Ni, Fe-Mn spinel | [ |
| 20Cr25Ni, 20Cr25Ni2.4Al | 3000 | 650 | 15 | 20Cr25Ni: 0.22 20Cr25Ni2.4Al: 0.05 | 20Cr25Ni: outer Fe-rich oxide, inner Cr-rich oxide 20Cr25Ni2.4Al: Cr-rich oxide | [ |
| AFA OC-6 | 1000 | 450 550 650 | 20 | 450 °C: 0.02 550 °C: 0.37 650 °C: 0.66 | 450 °C: Al2O3, (Cr, Mn)3O4 650 °C: multilayer structure, Fe-rich oxide | [ |
| 316SS | 1000 | 500 600 | 20 | 500 °C: 0.01 600 °C: 0.11 | 500 °C: Cr2O3 600 °C: outer Fe3O4, inner Cr-O and Cr-Mn spinel | [ |
| AFA (A1) AFA-0.6 Nb (A2) AFA-2.5 Nb (A3) | 1000 | 600 | 20 | A1: 0.08 A2: 0.02 A3: 0.16 | A1: outer Fe-rich oxide and Cr2O3, inner Al2O3 A2: outer Cr2O3, inner Al2O3 A3: outer Fe-rich oxide and Cr2O3, inner Al2O3 | [ |
| SS316, C276 | 1000 | 650 750 | 20 | Thickness of oxide film: SS316: 2.5 µm C276: < 2 µm | SS316: Fe-rich oxide and Fe-Cr-O spinel C276: Cr-rich oxide | [ |
| 430SS, 630SS, SS347H, SS316LN | 1000 | 650 | 20 | SS430: 0.45 SS630: 0.13 SS347H: 0.7 SS316: 1.3 | SS430: Mn3O4 nodules and Cr2O3 layer SS630: Cr2O3 layer SS347H and SS316: outer Fe3O4 layer and inner spinel oxide layer | [ |
| Fe20Cr25NiNb Fe20Cr25NiNb2.5Al Fe20Cr25NiNb5Al Fe20Cr25NiNb8Al | 1000 | 650 | 20 | Fe20Cr25NiNb: 0.15 Fe20Cr25NiNb2.5Al: 0.02 Fe20Cr25NiNb5Al: 0.02 Fe20Cr25NiNb8Al: 0.02 | Fe20Cr25NiNb: Cr2O3 layer + Fe3O4 nodules Al-added stainless steel: Cr2O3 layer + Al2O3 layer | [ |
| 316FR | 8000 | 600 | 20 | 316FR: 0.8 | 316FR: Fe-rich oxide nodules | [ |
| Alloy 800H AL-6XN | 3000 | 650 | 20.7 | Alloy 800H: 0.15 AL-6XN: 0.23 | Alloy 800H: outer (Fe, Cr)-rich oxide, inner Cr-rich oxide and Al-rich oxide AL-6XN: outer (Fe, Cr)-rich oxide, inner Cr-rich oxide | [ |
| Gr. 91, 316L, HR 120, IN625 | 1000 | 550 | 20 | Gr. 91: 3.5 316L: 0.12 HR 120: 0.05 IN625: 0.04 | Gr. 91: Fe3O4 layer 316L: Cr2O3 layer + Fe-O nodules HR 120: Cr2O3 layer IN625: Cr2O3 layer | [ |
Table 2 Corrosion performance comparison of 304LN and other stainless steels
| Materials | Time (h) | Temperature (°C) | Pressure (MPa) | Corrosion mass gain (mg/cm2) | Corrosion products | References |
|---|---|---|---|---|---|---|
| 304LN | 1000 | 650 | 15 | 0.055 | Outer Cr2O3 layer Intermediate (Mn, Cr)-O Inner SiO2 layer | This work |
| T91, SS316, SS308, Alloy 800 | 310 | 550 | 25 | T91: 2.7 SS316: 0.037 SS308: 0.016 Alloy 800: 0.042 | T91: Fe-O + Fe-Cr-O spinel; SS316/SS308/Alloy 800: Fe-Cr-Si-rich oxide layer | [ |
| T91, TP347HFG, Alloy 617 | 500 | 650 | 15 | T91: 5 TP347HFG: 0.022 Alloy 617: 0.025 | T91: Fe3O4 + (Fe, Cr)3O4 TP347HFG: Cr2O3 layer alloy 617: Cr2O3 layer | [ |
| 316SS, 310SS, Alloy 800H | 3000 | 650 | 20 | 316SS: 1.8 310SS: 0.2 Alloy 800H: 0.19 | 316SS:Fe-O, Fe-Cr2O4 310SS: Cr2O3, Cr1.3Fe0.7O3, Fe-Cr2O4 Alloy 800H: Fe3O4, Fe-Ni, Fe-Mn spinel | [ |
| 20Cr25Ni, 20Cr25Ni2.4Al | 3000 | 650 | 15 | 20Cr25Ni: 0.22 20Cr25Ni2.4Al: 0.05 | 20Cr25Ni: outer Fe-rich oxide, inner Cr-rich oxide 20Cr25Ni2.4Al: Cr-rich oxide | [ |
| AFA OC-6 | 1000 | 450 550 650 | 20 | 450 °C: 0.02 550 °C: 0.37 650 °C: 0.66 | 450 °C: Al2O3, (Cr, Mn)3O4 650 °C: multilayer structure, Fe-rich oxide | [ |
| 316SS | 1000 | 500 600 | 20 | 500 °C: 0.01 600 °C: 0.11 | 500 °C: Cr2O3 600 °C: outer Fe3O4, inner Cr-O and Cr-Mn spinel | [ |
| AFA (A1) AFA-0.6 Nb (A2) AFA-2.5 Nb (A3) | 1000 | 600 | 20 | A1: 0.08 A2: 0.02 A3: 0.16 | A1: outer Fe-rich oxide and Cr2O3, inner Al2O3 A2: outer Cr2O3, inner Al2O3 A3: outer Fe-rich oxide and Cr2O3, inner Al2O3 | [ |
| SS316, C276 | 1000 | 650 750 | 20 | Thickness of oxide film: SS316: 2.5 µm C276: < 2 µm | SS316: Fe-rich oxide and Fe-Cr-O spinel C276: Cr-rich oxide | [ |
| 430SS, 630SS, SS347H, SS316LN | 1000 | 650 | 20 | SS430: 0.45 SS630: 0.13 SS347H: 0.7 SS316: 1.3 | SS430: Mn3O4 nodules and Cr2O3 layer SS630: Cr2O3 layer SS347H and SS316: outer Fe3O4 layer and inner spinel oxide layer | [ |
| Fe20Cr25NiNb Fe20Cr25NiNb2.5Al Fe20Cr25NiNb5Al Fe20Cr25NiNb8Al | 1000 | 650 | 20 | Fe20Cr25NiNb: 0.15 Fe20Cr25NiNb2.5Al: 0.02 Fe20Cr25NiNb5Al: 0.02 Fe20Cr25NiNb8Al: 0.02 | Fe20Cr25NiNb: Cr2O3 layer + Fe3O4 nodules Al-added stainless steel: Cr2O3 layer + Al2O3 layer | [ |
| 316FR | 8000 | 600 | 20 | 316FR: 0.8 | 316FR: Fe-rich oxide nodules | [ |
| Alloy 800H AL-6XN | 3000 | 650 | 20.7 | Alloy 800H: 0.15 AL-6XN: 0.23 | Alloy 800H: outer (Fe, Cr)-rich oxide, inner Cr-rich oxide and Al-rich oxide AL-6XN: outer (Fe, Cr)-rich oxide, inner Cr-rich oxide | [ |
| Gr. 91, 316L, HR 120, IN625 | 1000 | 550 | 20 | Gr. 91: 3.5 316L: 0.12 HR 120: 0.05 IN625: 0.04 | Gr. 91: Fe3O4 layer 316L: Cr2O3 layer + Fe-O nodules HR 120: Cr2O3 layer IN625: Cr2O3 layer | [ |
Fig. 12 Comprehensive analysis of SIMS and TEM results: a BFTEM, b element distribution from EDS line scan in a, c SIMS results with the horizontal axis in distance (nm)
| [1] | K.Y. Li, Z.L. Zhu, B. Xiao, J.L. Luo, N.Q. Zhang, Prog. Mater. Sci. 136, 101107 (2023) |
| [2] | Y. Ahn, S.J. Bae, M. Kim, S.K. Cho, S. Baik, J.I. Lee, J.E. Cha, Nucl. Eng. Technol. 47, 647 (2015) |
| [3] | H.J. Lee, S.H. Kim, H. Kim, C. Jang, Appl. Surf. Sci. 388, 48 (2016) |
| [4] | V. Firouzdor, K. Sridharan, G. Cao, M. Anderson, T.R. Allen, Corros. Sci. 69, 281 (2013) |
| [5] | D.C. Thomas, Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results from the CO2 Capture Project (Elsevier, Amsterdam, 2005), pp.937-951 |
| [6] | H.J. Lee, H. Kim, S.H. Kim, C. Jang, Corros. Sci. 99, 227 (2015) |
| [7] | M. Mohitpour, P. Seevam, K.K. Botros, B. Rothwell, C. Ennis, Pipeline Transportation of Carbon Dioxide Containing Impurities (ASME Press, New York, 2012), pp. 209-229 |
| [8] | F. Rouillard, F. Charton, G. Moine, Corrosion 67, 095001 (2011) |
| [9] | J.P. Gibbs, Dissertation, Massachusetts Institute of Technology, 2010 |
| [10] | H. Yang, W.W. Liu, B. Gong, E. Jiang, Y.P. Huang, G. Zhang, Y.F. Zhao, Corros. Sci. 192, 109801 (2021) |
| [11] | B.A. Pint, R.G. Brese, J.R. Keiser, The effect of temperature and pressure on supercritical Co2 compatibility of conventional structural alloys. Paper Presented at the 5th International Symposium—Supercritical CO2 Power Cycles, San Antonio, Texas, USA, 28-31 March 2016 |
| [12] | J. Ju, H.Y. Yu, Y.L. Zhao, T. Yang, B. Xiao, P. Peng, R. Wang, H. Wang, X.Q. Zeng, J. Wang, Z. Shen, Corros. Sci. 227, 111800 (2024) |
| [13] | B.A. Pint, R.G. Brese in Fundamentals and Applications of Supercritical Carbon Dioxide (sCO₂) Based Power Cycles. ed. by K. Brun, P. Friedman, R. Dennis (Elsevier, Duxford, 2017), pp. 67-104 |
| [14] | H.I. Khan, N.Q. Zhang, W.Q. Xu, Z.L. Zhu, D.F. Jiang, H. Xu, Int. J. Fatigue 118,22 (2019) |
| [15] |
M. Wang, M. Song, C.R. Lear, G.S. Was, J. Nucl. Mater. 515, 52 (2019)
DOI |
| [16] | R.P. Oleksak, J.P. Baltrus, L. Teeter, M. Ziomek-Moroz, Ö. Dogan, Corrosion 74, 1047 (2018) |
| [17] | Z.D.D. Ma, S. Cong, H. Chen, Z. Liu, Y.Y. Dong, R. Tang, T. Qiu, Y. Chen, X.L. Guo, Materials 16, 4081 (2023) |
| [18] | S.H. Kim, G.O. Subramanian, C. Kim, C. Jang, K.M. Park, Surf. Coat. Technol. 349, 415 (2018) |
| [19] | H.S. Chen, J.D. Luo, T.F. Zhang, C. Jang, R. Tang, B.J. Dong, J. Li, X.S. Leng, J. Mater. Res. Technol. 23, 5246 (2023) |
| [20] | T. Furukawa, Y. Inagaki, M. Aritomi, Prog. Nucl. Energy 53, 1050 (2011) |
| [21] | G. Cao, V. Firouzdor, K. Sridharan, M. Anderson, T.R. Allen, Corros. Sci. 60, 246 (2012) |
| [22] | B. Wu, N.F. Li, Y.S. Zhang, H.L. Ming, M. Shu, Y.D. Sun, D.C. Hou, Y.F. Li, J.Q. Wang, E.H. Han, Corros. Sci. 234, 112131 (2024) |
| [23] | X. Luo, R. Tang, C.S. Long, Z. Miao, Q. Peng, C. Li, Nucl. Eng. Technol. 40, 147 (2008) |
| [24] | Y.H. Zhou, K. Chen, P.A. Ferreirós, D.X. Gao, M. Song, Z. Shen, Z.Q. Que, J.T. Yu, L.F. Zhang, X.Q. Zeng, Corros. Sci. 244, 112636 (2025) |
| [25] | L. Tan, M. Anderson, D. Taylor, T.R. Allen, Corros. Sci. 53, 3273 (2011) |
| [26] | H.J. Lee, S.H. Kim, C. Jang, Mater. Charact. 138, 245 (2018) |
| [27] | F. Rouillard, T. Furukawa, Corros. Sci. 105, 120 (2016) |
| [28] | D.X. Gao, Z. Shen, K. Chen, X. Zhou, H. Liu, J.Y. Wang, Y.X. Li, Z.X. Liu, H.Q. Deng, W.Y. Wang, X.Q. Zeng, Prog. Mater. Sci. 147, 101348 (2025) |
| [29] | Y.W. Chen, S. Ma, J. Ju, K. Chen, J.Y. Wang, Z. Shen, X.Q. Zeng, Corros. Sci. 245, 112674 (2025) |
| [30] | Z.P. Wang, Z. Shen, Y. Liu, Y.H. Zhao, Q.C. Zhu, Y.W. Chen, J.Y. Wang, Y.X. Li, S. Lozano-Perez, X.Q. Zeng, J. Magnes. Alloys 12, 4045 (2024) |
| [31] | P. Wiman, M. Boonpensin, P. Saranyachot, T. Thublaor, Approximation in Ellingham diagram and calculation approach using heat capacity of oxides and metals constituent in stainless steels. Paper Presented at Research, Invention, and Innovation Congress—Materials Science, King Mongkuts Univ Technol Bangkok, ELECTR NETWORK, 1-3 Sep. 2021 |
| [32] | E. Epifano, D. Monceau, Corros. Sci. 217, 111113 (2023) |
| [33] | L. Rozumová, T. Melichar, L. Velebil, Microstructural evaluation of preselected steels for turbine after supercritical CO2 exposure. Paper Presented at 4th European sCO2 Conference for Energy Systems: March 23-24, 2021, Online Conference, 23-24 March 2021 |
| [34] | R.P. Oleksak, R. Addou, B. Gwalani, J.P. Baltrus, T. Liu, J.T. Diulus, A. Devaraj, G.S. Herman, Ö.N. Doğan, NPJ Mtaer. Degrad. 5, 46 (2021) |
| [35] | R.I. Olivares, D.J. Young, P. Marvig, W. Stein, Oxid. Metals 84, 585 (2015) |
| [36] | K. Li, X. Han, Y. Zeng, Effect of impurity on the high-temperature corrosion performance of alloys in supercritical CO2. Paper Presented at the AMPP Annual Conference + Expo, San Antonio, Texas, USA, 6-9 March 2022 |
| [37] | H. Chen, S.H. Kim, C. Kim, J. Chen, C. Jang, Corros. Sci. 156, 16 (2019) |
| [38] | T. Ishitsuka, Y. Inoue, H. Ogawa, Oxid. Metals 61, 125 (2004) |
| [39] | Y.C. Liu, W.F. Wei, L. Benum, M. Oballa, M. Gyorffy, W.X. Chen, Oxid. Metals 73, 207 (2010) |
| [40] | T.D. Nguyen, J. Zhang, D.J. Young, Corros. Sci. 112, 110 (2016) |
| [41] | L. Teeter, B. Adam, T. Wood, J.D. Tucker, Corros. Sci. 192, 109752 (2021) |
| [42] | L.F. He, P. Roman, B. Leng, K. Sridharan, M. Anderson, T.R. Allen, Corros. Sci. 82, 67 (2014) |
| [43] | Z.Y. Liang, Y. Gui, Y.G. Wang, Q.X. Zhao, Energy 175,345 (2019) |
| [44] | J.A. Colwell, R.A. Rapp, Metall. Trans. A 17, 1065 (1986) |
| [45] | D.J. Young, T.D. Nguyen, P. Felfer, J. Zhang, J.M. Cairney, Scr. Mater. 77, 29 (2014) |
| [46] | I. Wolf, H.J. Grabke, P. Schmidt, Oxid. Metals 29, 289 (1988) |
| [47] | P. Glarborg, L.L. Bentzen, Energy Fuels 22,291 (2008) |
| [48] | E.M. Müller-Lorenz, H.J. Grabke, Mater. Corros. 50, 614 (1999) |
| [49] | G.O. Subramanian, H.J. Lee, S.H. Kim, C. Jang, Oxid. Metals 89, 683 (2018) |
| [50] | R. Olivares, W. Stein, T. Nguyen, D. Young in Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, Algarve, Portugal, 11-14 October 2016 |
| [51] | M. Hillert, C.A. Qiu, Metall. Trans. A 22, 2187 (1991) |
| [52] | J. Li, J. Miles, W. Zheng, A. Qian, P. Liu, W. Cook, Effect of Cr content on corrosion resistance of experimental Fe-Cr alloys under SCW condition. Paper Presented at Symposium of the Extraction-and-Processing-Division (EPD) held During 140th TMS Annual Meeting and Exhibition, San Diego, California, Feb. 27-Mar. 03 2011 |
| [53] | J. Yoo, W.M. Choi, S.S. Sohn, B.J. Lee, G.Y. Kim, Y.J. Oh, S. Lee, Metall. Mater. Trans. A 49, 4604 (2018) |
| [54] | G.S. Chen, S. Du, Z.J. Zhou, Materials 17, 19 (2024) |
| [55] | T.D. Nguyen, J. Zhang, D.J. Young, Oxid. Metals 81, 549 (2014) |
| [56] | Y. Kurata, M. Futakawa, J. Nucl. Mater. 325, 217 (2004) |
| [57] | H.H. Mao, X. Qi, J. Cao, L.C. An, Y.T. Yang, J. Iron. Steel Res. Int. 24, 561 (2017) |
| [58] | H.G.A. Bates, Nucl. Technol. 66, 415 (1984) |
| [1] | Zhenzhen Tian, Rongqian Wu, Fubing Yu, Yan Zhou, Wenhui Yao, Yuan Yuan, Zhihui Xie, Yanlong Ma, Atrens Andrej, Liang Wu. Preparation and Corrosion Resistance Mechanism of Magnesium-Lithium Alloy Micro-arc Oxidation/Quaternary LDHs@GO Self-healing Composite Film [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1545-1558. |
| [2] | Yi-Fan Zhang, Liang-Yu Chen, Zi-Han Ge, Chenglong Teng, Yong Liu, Lai-Chang Zhang. In Vitro Gradual Decrease in Strength of Ti Scaffolds in Hank’s Solution upon Long-Term Immersion: Challenges and Prospective Solutions [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1331-1339. |
| [3] | Zheng-Hong Liu, Ying Han, Jia-Peng Sun, Ming-Kun Jiang, Ying Song, Guo-Qing Zu, Xu Ran. A Novel Cu-Modified 20Cr Lean Duplex Stainless Steel with Exceptional Combination of Mechanical Properties and Corrosion Resistance [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1361-1370. |
| [4] | Yuntian Lou, Shengyu He, Xudong Chen, Weiwei Chang, Hao Zhang, Jingzhi Yang, Hongchang Qian, Dawei Zhang. Effect of Ultrasonic Shot Peening on the Corrosion Resistance and Antibacterial Properties of 304 Cu-Bearing Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1371-1384. |
| [5] | Huimin Yang, Kun Yang, Guobing Wei, Rongguang Li. Optimization of Surface Layer Properties of Mg-9Li-1Zn Alloy by Ultrasonic Surface Rolling Process and its Impact on Corrosion Behavior [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1421-1435. |
| [6] | Dongchao Li, Fen Zhang, Lanyue Cui, Yueling Guo, Rongchang Zeng. Accelerated Corrosion Rate of Wire Arc Additive Manufacturing of AZ91D Magnesium Alloy: The Formation of Nano-scaled AlMn Phase [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1069-1082. |
| [7] | Hanqiang Liu, Xing Li, Jibo Su, Chaoyun Yang, Yikun Luan, Dianzhong Li. Pitting Corrosion Behaviour in 9Cr18 Bearing Steel Under Salt Spray Environment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1237-1245. |
| [8] | Li Zhao, Tian-Yu Cui, Wei-Wei Chang, Hong-Chang Qian, Yun-Tian Lou, Jing-Zhi Yang, Da-Wei Zhang. Effect of Mineralization Induced by Shewanella algae on Passive Film of Stainless Steel via FIB-SEM/TEM and EELS [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 877-888. |
| [9] | Yunhu Ding, Yingpeng Li, Hongfang Liu, Wenhao Wang, Yijun Wei, Haitao Duan, Wen Zhan. Corrosion Evolution Behavior of Ti/Zr/Oligomeric Epoxy Silane Composite Chemical Conversion Coatings on Multi-metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 889-903. |
| [10] | Yang Zhao, Bo He, Jinliang Yang, Yongxiang Liu, Tao Zhang, Fuhui Wang. Critical Role of Intermetallic Particles in the Corrosion of 6061 Aluminum Alloy and Anodized Aluminum Used in Semiconductor Processing Equipment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 904-924. |
| [11] | Chenzhi Xing, Ming-Hsien Lee, Gongwang Cao, Yuwei Liu, Quanzhong Guo, Zhenyao Wang, Chuan Wang. Discoloration Process of Minted Copper-Nickel Alloys in Chloride Ion-Containing Environments: Experimental and DFT Research [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 925-945. |
| [12] | Yang Feng, Shuai Wang, Yang Zhao, Li-Qing Chen. Achieving High-Temperature Oxidation and Corrosion Resistance in Fe-Mn-Cr-Al-Cu-C TWIP Steel via Annealing Control [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 642-656. |
| [13] | Chao Hai, Yuetong Zhu, Cuiwei Du, Xiaogang Li. Effect of Retained Austenite on the Corrosion Resistance of High-Strength Low-Carbon Steel in Artificial Seawater [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 657-671. |
| [14] | Yifei Gao, Peng Zhang, Pan Ren, Yingfei Yang, Guofeng Han, Wenbo Du, Wei Li, Qiwei Wang. Effect of CeO2 on the H2O/NaCl-Induced Corrosion Behavior of Ni-Co Coating at 650 °C [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 672-690. |
| [15] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
