Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (7): 1145-1156.DOI: 10.1007/s40195-025-01862-w
Previous Articles Next Articles
Ran Ni1, Shen Hua1, Huashen Liu1, Saijun Huang1, Ying Zeng1, Yanqin Chai1, Hao Zhou2, Jiang Zheng3, Dongdi Yin1()
Received:
2024-12-02
Revised:
2025-01-09
Accepted:
2025-01-24
Online:
2025-07-10
Published:
2025-05-16
Contact:
Dongdi Yin, ahnydd@swjtu.edu.cn
Ran Ni, Shen Hua, Huashen Liu, Saijun Huang, Ying Zeng, Yanqin Chai, Hao Zhou, Jiang Zheng, Dongdi Yin. Statistical Study of Activity and Hall-Petch Coefficients for Individual Slip Modes in Basal-Textured Pure Mg[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1145-1156.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Representative microstructure of the rolled pure Mg sheets with different grain size (GS): a1-c1 IPF maps along ND; a2-c2 GS distributions. The IPF map and its corresponding GS distribution for each sample are in the same column. Note that the observation plane was always the plane containing RD and TD
Fig. 2 PFs for samples with GSs of a1-a4 10 μm and b1-b4 85 μm, with the average Schmid factor distribution for basal (Bas) < a > slip (the second column), prismatic (Pris) < a > slip (the third column), and pyramidal (Pyr) II < c + a > slip (the fourth column), respectively. The average Schmid factor (m) of individual slip modes for all the studied grains is provided at the top of each corresponding PF. This figure shows that the texture effect on the slip activations for different GSs was limited, and GS was the main variable in this work
GS (μm) | YS (MPa) | US (MPa) | UEL (%) |
---|---|---|---|
10 | 112.3 ± 2.0 | 209.7 ± 2.3 | 12.7 ± 1.6 |
15 | 105.16 ± 6.4 | 195.40 ± 8.2 | 12.0 ± 3.1 |
30 | 100.5 ± 2.6 | 178.9 ± 6.8 | 9.4 ± 1.5 |
40 | 88.2 ± 1.9 | 161.1 ± 4.3 | 5.9 ± 0.9 |
70 | 62.2 ± 2.4 | 125.5 ± 3.3 | 4.8 ± 1.0 |
85 | 38.5 ± 3.8 | 97.0 ± 6.2 | 3.6 ± 1.3 |
Table 1 Mechanical properties of the pure Mg sheets under RD tension
GS (μm) | YS (MPa) | US (MPa) | UEL (%) |
---|---|---|---|
10 | 112.3 ± 2.0 | 209.7 ± 2.3 | 12.7 ± 1.6 |
15 | 105.16 ± 6.4 | 195.40 ± 8.2 | 12.0 ± 3.1 |
30 | 100.5 ± 2.6 | 178.9 ± 6.8 | 9.4 ± 1.5 |
40 | 88.2 ± 1.9 | 161.1 ± 4.3 | 5.9 ± 0.9 |
70 | 62.2 ± 2.4 | 125.5 ± 3.3 | 4.8 ± 1.0 |
85 | 38.5 ± 3.8 | 97.0 ± 6.2 | 3.6 ± 1.3 |
Fig. 4 Yield strength plotted as a function of the inverse square root of the mean GS (${d}^{-1/2}$), showing the Hall-Petch relationship, which was divided into two regions
Fig. 5 Representative SE SEM images illustrating microstructural evolution during tension for the samples with GS of a1-c1 10 μm; a2-c2 30 μm; a3-c3 85 μm. Slip trace and twin are indicated by the white and red arrows, respectively. The plastic strain levels are provided on the right-hand side. The same column represents the same plastic strain level, which is before loading, 2%, and 5%, respectively
Fig. 7 Schematic diagram of slip trace analysis, taking grain #80 at 2% strain as an example: a SE SEM image, b IPF map, c the theoretical slip traces with a table showing the m value for each slip system along RD loading. The theoretical slip plane traces and the unit cell orientation for the grain provided in c were calculated using the Euler angles acquired before loading
Fig. 8 Frequencies of individual slip modes at 5% plastic strain for samples with different GS. A total of 136 sets of slip traces were identified from 1150 grains
Fig. 9 Microstructure of the pure Mg sheet with different GSs at 5% strain: a1-a3 IPF maps and b1-b3 corresponding twin boundary maps. Black lines represent high angle GBs (GB misorientation angle > 10°), while red lines represent the boundary of tensile twins (TTWs)
GS (μm) | 10 | 30 | 85 | |
---|---|---|---|---|
Area information | Number of grains | 286 | 200 | 503 |
Number of grain boundaries | 771 | 528 | 1175 | |
Twin information | Number of twins | 3 | 27 | 112 |
Average twin number per grain | 0.01 | 0.14 | 0.22 | |
Twinned area fraction | 0 | 0.04 | 0.09 | |
Number of twinned grains | 3 | 25 | 69 | |
Twinned grain fraction | 0.01 | 0.13 | 0.14 | |
Twinned grain boundary fraction | 0 | 0.10 | 0.12 |
Table 2 Statistical information of twinning at 5% strain
GS (μm) | 10 | 30 | 85 | |
---|---|---|---|---|
Area information | Number of grains | 286 | 200 | 503 |
Number of grain boundaries | 771 | 528 | 1175 | |
Twin information | Number of twins | 3 | 27 | 112 |
Average twin number per grain | 0.01 | 0.14 | 0.22 | |
Twinned area fraction | 0 | 0.04 | 0.09 | |
Number of twinned grains | 3 | 25 | 69 | |
Twinned grain fraction | 0.01 | 0.13 | 0.14 | |
Twinned grain boundary fraction | 0 | 0.10 | 0.12 |
GS (μm) | CRSSPris/CRSSBas | CRSSPyrIICA/CRSSBas |
---|---|---|
10 | 58.8 | 137.0 |
30 | 21.8 | 74.1 |
85 | 11.6 | 67.9 |
Table 3 Estimated CRSS ratios for non-basal slips to basal slip
GS (μm) | CRSSPris/CRSSBas | CRSSPyrIICA/CRSSBas |
---|---|---|
10 | 58.8 | 137.0 |
30 | 21.8 | 74.1 |
85 | 11.6 | 67.9 |
Fig. 11 Hall-Petch relationships for a prismatic < a > slip and b pyramidal II < c + a > slip for the present Mg (hollow pentagram-shaped points and solid lines). The available Hall-Petch relationships of other materials (solid points and dashed lines) summarized from literature [9,15,42,43] are also provided for comparison
[1] | Z. Jiang, B. Hu, Z. Li, F. Yao, J. Han, D. Li, X. Zeng, W. Ding, Acta Metall Sin.-Engl. Lett. 37, 1301 (2024) |
[2] | Q. Zhu, Y. Li, F. Cao, D. Qiu, Y. Yang, J. Wang, H. Zhang, T. Ying, W. Ding, X. Zeng, Nat. Commun. 13, 5838 (2022) |
[3] | Z. Wang, Z. Shen, Y. Liu, Y. Zhao, Q. Zhu, Y. Chen, J. Wang, Y. Li, S. Lozano-Perez, X. Zeng, J. Magnes. Alloy. 12, 4045 (2024) |
[4] | B. Du, Z. Yu, K. Shi, K. Liu, S. Li, W. Du, Acta Metall Sin.-Engl. Lett. 36, 456 (2023) |
[5] | S. Ruan, M. Yang, H. Wang, Y. Li, R. Cheng, Y. Zhou, L. Jiang, Mater. Res. Lett. 12, 737 (2024) |
[6] | B. Yang, J. Wang, M.R.G. Ferdowsi, Q. Chao, X. Gao, Y. Li, Y. Zhu, M. Barnett, J. Lorca, Acta Mater. 278, 120231 (2024) |
[7] | A.P. Carvalho, R.B. Figueiredo, Mater. Trans. 64, 1272 (2023) |
[8] | L.B. Tong, J.H. Chu, D.N. Zou, Q. Sun, S. Kamado, H.G. Brokmeier, M.Y. Zheng, Acta Metall Sin.-Engl. Lett. 34, 265 (2021) |
[9] | R. Zheng, J. Du, S. Gao, H. Somekawa, S. Ogata, N. Tsuji, Acta Mater. 198, 35 (2020) |
[10] | H. Yu, Y. Xin, M. Wang, Q. Liu, J. Mater. Sci. Technol. 34, 248 (2018) |
[11] | A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, S.R. Agnew, Mater. Sci. Eng. A 486, 545 (2008) |
[12] | M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Acta Mater. 52, 5093 (2004) |
[13] | E. Chandiran, Y. Ogawa, R. Ueji, H. Somekawa, J. Alloy. Compd. 930, 167443 (2023) |
[14] | L.L. Chang, Y.N. Wang, X. Zhao, M. Qi, Mater. Charact. 60, 991 (2009) |
[15] | Y. Wang, H. Choo, Acta Mater. 81, 83 (2014) |
[16] | H. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady, Scr. Mater. 112, 50 (2016) |
[17] | M.R. Barnett, Scr. Mater. 59, 696 (2008) |
[18] | K. Wei, R. Hu, D. Yin, L. Xiao, S. Pang, Y. Cao, H. Zhou, Y. Zhao, Y. Zhu, Acta Mater. 206, 116604 (2021) |
[19] |
D.F. Shi, M.T. Pérez-Prado, C.M. Cepeda-Jiménez, Acta Mater. 180, 218 (2019)
DOI |
[20] | M.T. Andani, A. Lakshmanan, V. Sundararaghavan, J. Allison, A. Misra, Acta Mater. 226, 117613 (2022) |
[21] | M.T. Andani, A. Lakshmanan, V. Sundararaghavan, J. Allison, A. Misra, Acta Mater. 200, 148 (2020) |
[22] | W.B. Hutchinson, M.R. Barnett, Scr. Mater. 63, 737 (2010) |
[23] | J. Koike, R. Ohyama, Acta Mater. 53, 1963 (2005) |
[24] | D.D. Yin, C.J. Boehlert, L.J. Long, G.H. Huang, H. Zhou, J. Zheng, Q.D. Wang, Int. J. Plast. 136, 102878 (2021) |
[25] | Y.B. Zhang, R. Ni, X.H. Zheng, S. Hua, H. Zhou, Y. Zeng, D.D. Yin, Metall. Mater. Trans. A 55, 1673 (2024) |
[26] | S. Hua, Z.W. Jiang, Y.F. Wan, G.H. Huang, H. Zhou, J. Zheng, Q.D. Wang, D.D. Yin, Mater. Sci. Eng. A 825, 141927 (2021) |
[27] | R. Ni, S.J. Ma, L.J. Long, J. Zheng, H. Zhou, Q.D. Wang, D.D. Yin, Mater. Sci. Eng. A 804, 140738 (2021) |
[28] | R. Hielscher, C.B. Silbermann, E. Schmidl, J. Ihlemann, J. Appl. Crystallogr. 52, 984 (2019) |
[29] | F. Bachmann, R. Hielscher, H. Schaeben, Solid State Phenom. 160, 63 (2010) |
[30] |
R. Ni, Z.W. Jiang, D.D. Yin, W. Yang, H. Zhou, J. Zheng, Q.D. Wang, Metall. Mater. Trans. A 53, 535 (2022)
DOI |
[31] |
Y.Q. Chai, C.J. Boehlert, Y.F. Wan, G.H. Huang, H. Zhou, J. Zheng, Q.D. Wang, D.D. Yin, Metall. Mater. Trans. A 52, 449 (2021)
DOI |
[32] | D. Zhang, M. Chen, X. Zhang, K. Li, L. Wang, Z. Zhao, P. Bai, D. Fang, Acta Metall Sin.-Engl. Lett. 37, 1830 (2024) |
[33] | R. Ni, C.J. Boehlert, Y. Zeng, B. Chen, S.J. Huang, J. Zheng, H. Zhou, Q.D. Wang, D.D. Yin, Int. J. Plast. 182, 104119 (2024) |
[34] | G. Zhu, L. Wang, Y. Sun, X. Shang, J. Wang, H. Wang, X. Zeng, Int. J. Plast. 143, 103018 (2021) |
[35] | C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado,JOM68, 116 (2016) |
[36] | D.D. Yin, B. Chen, Y.Q. Chai, Y.F. Wan, H. Zhou, J. Zheng, Q.D. Wang, Y. Zeng, Trans. Nonferrous Met. Soc. China33, 2970 (2023) |
[37] | Y.Q. Chai, D.D. Yin, S. Hua, G.H. Huang, H. Zhou, J. Zheng, Q.D. Wang, Trans. Nonferrous Met. Soc. China32, 3534 (2022) |
[38] | J. Wang, M.R.G. Ferdowsi, P.A. Lynch, S.R. Kada, M.R. Barnett, Scr. Mater. 207, 114253 (2022) |
[39] | H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, M.A. Crimp, Acta Mater. 61, 7555 (2013) |
[40] | D.D. Yin, Q.D. Wang, C.J. Boehlert, Z. Chen, H.M. Li, R.K. Mishra, A. Chakkedath, Metall. Mater. Trans. A 47, 6438 (2016) |
[41] | R. Ni, S. Hua, S. Huang, Y. Zeng, Y. Chai, H. Zhou, J. Zheng, D. Yin, J. Alloy. Compd. 1008, 176570 (2024) |
[42] | B. Raeisinia, S.R. Agnew, A. Akhtar, Metall. Mater. Trans. A 42, 1418 (2011) |
[43] | A. Kula, C.J. Silva, M. Niewczas, J. Alloy. Compd. 727, 642 (2017) |
[44] | E. Schmid, Ztschr. Electrochem. 37, 447 (1931) |
[45] | N. Stanford, M.R. Barnett, Int. J. Plast. 47, 165 (2013) |
[46] | J. Koike, Metall. Mater. Trans. A 36, 1689 (2005) |
[47] | M.A. Meyers, O. Vöhringer, V.A. Lubarda, Acta Mater. 49, 4025 (2001) |
[48] | A. Tehranchi, B. Yin, W.A. Curtin, Acta Mater. 151, 56 (2018) |
[49] | J. Jeong, M. Alfreider, R. Konetschnik, D. Kiener, S.H. Oh, Acta Mater. 158, 407 (2018) |
[50] | F. Wang, K. Hazeli, K.D. Molodov, C.D. Barrett, T. Al-Samman, D.A. Molodov, A. Kontsos, K.T. Ramesh, H. El Kadiri, S.R. Agnew, Scr. Mater. 143, 81 (2018) |
[51] | D. Nagarajan, Mater. Sci. Eng. A 860, 144292 (2022) |
[52] | H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, Q. Liu, Acta Mater. 128, 313 (2017) |
[53] |
B. Guan, Y. Xin, X. Huang, P. Wu, Q. Liu, Acta Mater. 173, 142 (2019)
DOI |
[54] | N.J. Petch, J. Iron Steel Inst. 174, 25 (1953) |
[55] | E.O. Hall, Proc. Phys. Soc. Sect. B64, 747 (1951) |
[56] | C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado, Acta Mater. 88, 232 (2015) |
[57] | S.R. Agnew, R.P. Mulay, F.J. Polesak, C.A. Calhoun, J.J. Bhattacharyya, B. Clausen, Acta Mater. 61, 3769 (2013) |
[58] | J.D. Robson, N. Stanford, M.R. Barnett, Acta Mater. 59, 1945 (2011) |
[59] | R. Ren, J. Fan, B. Wang, Q. Zhang, W. Li, H. Dong, J. Alloy. Compd. 920, 165924 (2022) |
[1] | Qi Zhou, Yufeng Xia, Yu Duan, Baihao Zhang, Yuqiu Ye, Peitao Guo, Lu Li. Microstructure and Mechanical Properties of Yb-Containing AZ80 Cast Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1095-1108. |
[2] | Yuanxiao Dai, Yue Zhang, Mei Wang, Jie Liu, Yaobo Hu, Bin Jiang. Three-Point Bending Deformation Behavior of a High Plasticity Mg-2.6Er-0.6Zr Alloy Sheet [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1109-1126. |
[3] | Hongyang Zhang, Huihui Nie, Zhijian Li, Hongsheng Chen, Wei Liang, Liuwei Zheng. Evolution of Microstructure and Mechanical Properties of AZ31 Sheets with Different Initial Microstructures During the Corrugated Wide Limit Alignment Process [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1012-1028. |
[4] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
[5] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. |
[6] | Xiaoqing Liu, Xianke Zhang, Jinwei Gao, Xiurong Zhu, Lei Xiao, Zhengchi Yang, Lijun Tan, Chubin Yang, Biao Wu, Huixin Chen, Jiayu Huang. Achieving Ultrahigh Strength in Mg-1.2Y-1.2Ni (at.%) Alloy via Tailoring Extrusion Rate [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 299-312. |
[7] | Zhiqing Chen, Zhixian Zhao, Yiqiang Hao, Xiaoling Chen, Liping Zhou, Jingya Wang, Tao Ying, Bin Chen, Xiaoqin Zeng. Development of Interpenetrating Phase Structure AZ91/Al2O3 Composites with High Stiffness, Superior Strength and Low Thermal Expansion Coefficient [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 245-258. |
[8] | Zhen-Liang Li, Xin-Lei Zhang. Evolution of Deformation Substructure and MgxZnyCaz Metastable Phase in Fine-Grained Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 71-85. |
[9] | Zulai Li, Yingxing Zhang, Junlei Zhang, Xiang Chen, Suokun Chen, Lujian Cui, Shengjie Han. Microstructure Characteristics, Texture Evolution and Mechanical Properties of Al-Mg-Si-Mn-xCu Alloys via Extrusion and Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1501-1522. |
[10] | Xue Han, Dan Zhang, Song Zhang, Mohammed R. I. Abueida, Lili Tan, Xiaopeng Lu, Qiang Wang, Huanye Liu. Fatigue and Corrosion Fatigue Properties of Mg-Zn-Zr-Nd Alloys in Glucose-Containing Simulated Body Fluids [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1533-1550. |
[11] | Lingyu Zhao, Wei Zhu, Chao Zhang, Yunchang Xin, Changjian Yan, Yao Cheng, Zhaoyang Jin. Detwinning and Anneal-Hardening Behaviors of Pre-Twinned AZ31 Alloys under Cryogenic Loading [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1551-1563. |
[12] | Gang Zeng, Hong Liu, Jing-Peng Xiong, Jian-Long Li, Yong Liu. Enhanced Grain Refining Effect of Mg-Zr Master Alloy on Magnesium Alloys via a Synergistic Strategy Involving Heterogeneous Nucleation and Solute-Driven Growth Restriction [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1354-1366. |
[13] | Hang Zhang, Jiaying Zhao, Rongguang Li, Boshu Liu, Shanshan Li, Sha Sha, Yuehong Zhang, Man Xu, Yan Tang. Microstructure and Mechanical Property of Mg-13Gd-0.2Ni Alloy Processed by Extrusion and Aging [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1367-1376. |
[14] | Guanjiu Wu, Yichao Xie, Yuan Li, Qing Wang, Chenfeng Fan, Wenfeng Wang, Lu Zhang, Shumin Han. Effect of Y, Al Co-Doping on Hydrogen Storage Properties of La-Mg-Ni-Based Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1399-1410. |
[15] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||