Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (8): 1399-1410.DOI: 10.1007/s40195-024-01709-w
Previous Articles Next Articles
Guanjiu Wu1, Yichao Xie1, Yuan Li1(), Qing Wang1, Chenfeng Fan1, Wenfeng Wang1, Lu Zhang1, Shumin Han1,2()
Received:
2023-10-17
Revised:
2024-01-24
Accepted:
2024-02-13
Online:
2024-08-10
Published:
2024-05-31
Contact:
Yuan Li, liyuan@ysu.edu.cn; Shumin Han, hanshm@ysu.edu.cn
Guanjiu Wu, Yichao Xie, Yuan Li, Qing Wang, Chenfeng Fan, Wenfeng Wang, Lu Zhang, Shumin Han. Effect of Y, Al Co-Doping on Hydrogen Storage Properties of La-Mg-Ni-Based Alloys[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1399-1410.
Add to citation manager EndNote|Ris|BibTeX
Design composition | La (wt%) | Y (wt%) | Mg (wt%) | Ni (wt%) | Al (wt%) | B/A | Actual composition |
---|---|---|---|---|---|---|---|
La0.74Y0.22Mg0.04 Ni3.34Al0.13 | 31.89 | 6.09 | 0.27 | 60.68 | 1.06 | 3.47 | La0.74Y0.22Mg0.04 Ni3.34Al0.13 |
La0.63Y0.33Mg0.04 Ni3.27Al0.20 | 27.68 | 9.37 | 0.30 | 61.02 | 1.63 | 3.47 | La0.63Y0.33Mg0.04 Ni3.28Al0.19 |
La0.52Y0.44Mg0.04 Ni3.21Al0.26 | 23.41 | 12.67 | 0.35 | 61.27 | 2.3 | 3.47 | La0.52Y0.44Mg0.04 Ni3.21Al0.26 |
Table 1 ICP test results of La0.96-xYxMg0.04Ni3.47-0.6xAl0.6x (x = 0.22, 0.33, 0.44) superlattice alloys
Design composition | La (wt%) | Y (wt%) | Mg (wt%) | Ni (wt%) | Al (wt%) | B/A | Actual composition |
---|---|---|---|---|---|---|---|
La0.74Y0.22Mg0.04 Ni3.34Al0.13 | 31.89 | 6.09 | 0.27 | 60.68 | 1.06 | 3.47 | La0.74Y0.22Mg0.04 Ni3.34Al0.13 |
La0.63Y0.33Mg0.04 Ni3.27Al0.20 | 27.68 | 9.37 | 0.30 | 61.02 | 1.63 | 3.47 | La0.63Y0.33Mg0.04 Ni3.28Al0.19 |
La0.52Y0.44Mg0.04 Ni3.21Al0.26 | 23.41 | 12.67 | 0.35 | 61.27 | 2.3 | 3.47 | La0.52Y0.44Mg0.04 Ni3.21Al0.26 |
Alloy | Phase | Space group | a (Å) | c (Å) | V (Å3) | c/a | Phase abundance (wt%) |
---|---|---|---|---|---|---|---|
#1 | Ce2Ni7 | P63/mmc(194) | 5.0502 | 24.6077 | 543.52 | 4.87 | 100 |
x = 0 | Ce2Ni7 | P63/mmc(194) | 5.0433 | 24.5394 | 540.54 | 4.87 | 100 |
x = 0.22 | Ce2Ni7 | P63/mmc(194) | 4.9722 | 24.5936 | 526.56 | 4.94 | 63 |
LaNi5 | P6/mmm(191) | 5.0058 | 3.9786 | 86.26 | 0.79 | 37 | |
x = 0.33 | Ce2Ni7 | P63/mmc(194) | 4.9744 | 24.5414 | 525.92 | 4.93 | 83 |
LaNi5 | P6/mmm(191) | 5.0051 | 3.9827 | 86.54 | 0.80 | 17 | |
x = 0.44 | Ce2Ni7 | P63/mmc(194) | 4.9636 | 24.5612 | 524.12 | 4.95 | 87 |
LaNi5 | P6/mmm(191) | 5.0101 | 3.9980 | 86.77 | 0.80 | 13 |
Table 2 Lattice parameters of #1 and La0.96-xYxMg0.04Ni3.47-0.6xAl0.6x (x = 0, 0.22, 0.33, 0.44) superlattice alloys
Alloy | Phase | Space group | a (Å) | c (Å) | V (Å3) | c/a | Phase abundance (wt%) |
---|---|---|---|---|---|---|---|
#1 | Ce2Ni7 | P63/mmc(194) | 5.0502 | 24.6077 | 543.52 | 4.87 | 100 |
x = 0 | Ce2Ni7 | P63/mmc(194) | 5.0433 | 24.5394 | 540.54 | 4.87 | 100 |
x = 0.22 | Ce2Ni7 | P63/mmc(194) | 4.9722 | 24.5936 | 526.56 | 4.94 | 63 |
LaNi5 | P6/mmm(191) | 5.0058 | 3.9786 | 86.26 | 0.79 | 37 | |
x = 0.33 | Ce2Ni7 | P63/mmc(194) | 4.9744 | 24.5414 | 525.92 | 4.93 | 83 |
LaNi5 | P6/mmm(191) | 5.0051 | 3.9827 | 86.54 | 0.80 | 17 | |
x = 0.44 | Ce2Ni7 | P63/mmc(194) | 4.9636 | 24.5612 | 524.12 | 4.95 | 87 |
LaNi5 | P6/mmm(191) | 5.0101 | 3.9980 | 86.77 | 0.80 | 13 |
Fig. 2 PCT curves a1-e1 and van't Hoff curves c2-e2 of #1 and La0.96-xYxMg0.04Ni3.47-0.6xAl0.6x (x = 0, 0.22, 0.33, 0.44) superlattice alloys: a1 #1, b1 x = 0, c1,c2 x = 0.22, d1,d2 x = 0.33, e1,e2 x = 0.44
Alloy | Temperature (K) | Hydrogen content (wt%) | Pab | Pde | Hf | ΔHab (kJ·mol−1) | ΔHde (kJ·mol−1) |
---|---|---|---|---|---|---|---|
#1 | 303 | 0.986 | Amor | Amor | - | - | - |
323 | 0.932 | Amor | Amor | - | |||
348 | 1.013 | Amor | Amor | - | |||
x = 0 | 303 | 0.903 | Amor | Amor | - | - | - |
323 | 0.879 | Amor | Amor | - | |||
348 | 0.896 | Amor | Amor | - | |||
x = 0.22 | 303 | 1.352 | 0.281 | 0.187 | 0.407 | − 27.101 | 25.239 |
323 | 1.390 | 0.522 | 0.328 | 0.465 | |||
348 | 1.340 | 1.128 | 0.682 | 0.503 | |||
x = 0.33 | 303 | 1.381 | 0.226 | 0.155 | 0.377 | − 28.285 | 26.306 |
323 | 1.368 | 0.448 | 0.294 | 0.421 | |||
348 | 1.363 | 0.965 | 0.598 | 0.478 | |||
x = 0.44 | 303 | 1.449 | 0.188 | 0.139 | 0.302 | − 29.216 | 27.572 |
323 | 1.446 | 0.397 | 0.285 | 0.331 | |||
348 | 1.443 | 0.843 | 0.573 | 0.386 |
Table 3 Summary table of hydrogen storage properties of #1 and La0.96-xYxMg0.04Ni3.47-0.6xAl0.6x (x = 0, 0.22, 0.33, 0.44) superlattice alloys
Alloy | Temperature (K) | Hydrogen content (wt%) | Pab | Pde | Hf | ΔHab (kJ·mol−1) | ΔHde (kJ·mol−1) |
---|---|---|---|---|---|---|---|
#1 | 303 | 0.986 | Amor | Amor | - | - | - |
323 | 0.932 | Amor | Amor | - | |||
348 | 1.013 | Amor | Amor | - | |||
x = 0 | 303 | 0.903 | Amor | Amor | - | - | - |
323 | 0.879 | Amor | Amor | - | |||
348 | 0.896 | Amor | Amor | - | |||
x = 0.22 | 303 | 1.352 | 0.281 | 0.187 | 0.407 | − 27.101 | 25.239 |
323 | 1.390 | 0.522 | 0.328 | 0.465 | |||
348 | 1.340 | 1.128 | 0.682 | 0.503 | |||
x = 0.33 | 303 | 1.381 | 0.226 | 0.155 | 0.377 | − 28.285 | 26.306 |
323 | 1.368 | 0.448 | 0.294 | 0.421 | |||
348 | 1.363 | 0.965 | 0.598 | 0.478 | |||
x = 0.44 | 303 | 1.449 | 0.188 | 0.139 | 0.302 | − 29.216 | 27.572 |
323 | 1.446 | 0.397 | 0.285 | 0.331 | |||
348 | 1.443 | 0.843 | 0.573 | 0.386 |
Alloy | Hydrogen content (wt%) | Pab (MPa) |
---|---|---|
Sm2Ni7 [ | 1.04 | Amor |
Sm1.65Mg0.35Ni7 [ | 0.88 | Amor |
LaY2Ni10.5 [ | 1.20 | Amor |
La0.8Mg0.2Ni3.5 [ | 1.21 | Platform tilt |
Nd0.8Mg0.2Ni3.5 [ | 0.76 | 0.35 (293 K) |
La0.52Y0.44Mg0.04Ni3.21Al0.26 | 1.449 | 0.188 (303 K) |
Table 4 Comparison of hydrogen storage properties of different A2B7 alloys
Alloy | Hydrogen content (wt%) | Pab (MPa) |
---|---|---|
Sm2Ni7 [ | 1.04 | Amor |
Sm1.65Mg0.35Ni7 [ | 0.88 | Amor |
LaY2Ni10.5 [ | 1.20 | Amor |
La0.8Mg0.2Ni3.5 [ | 1.21 | Platform tilt |
Nd0.8Mg0.2Ni3.5 [ | 0.76 | 0.35 (293 K) |
La0.52Y0.44Mg0.04Ni3.21Al0.26 | 1.449 | 0.188 (303 K) |
Fig. 3 Hydrogen absorption curve of #1 and La0.96-xYxMg0.04Ni3.47-0.6xAl0.6x (x = 0, 0.22, 0.33, 0.44) superlattice alloys a #1, b x = 0, c x = 0.22, d x = 0.33, e x = 0.44
Alloy | Cycle number | Hydrogen storage capacity (wt%) | Capacity retention rate (%) |
---|---|---|---|
#1 | 1 | 1.483 | 56.98 |
2 | 0.993 | ||
10 | 0.935 | ||
20 | 0.845 | ||
x = 0 | 1 | 1.503 | 52.83 |
2 | 0.966 | ||
10 | 0.873 | ||
20 | 0.794 | ||
x = 0.22 | 1 | 1.381 | 91.38 |
2 | 1.313 | ||
10 | 1.271 | ||
20 | 1.262 | ||
x = 0.33 | 1 | 1.488 | 87.97 |
2 | 1.396 | ||
10 | 1.318 | ||
20 | 1.309 | ||
x = 0.44 | 1 | 1.571 | 86.66 |
2 | 1.498 | ||
10 | 1.375 | ||
20 | 1.361 |
Table 6 Cyclic properties of #1 and La0.96-xYxMg0.04Ni3.47-0.6xAl0.6x (x = 0, 0.22, 0.33, 0.44) superlattice alloys
Alloy | Cycle number | Hydrogen storage capacity (wt%) | Capacity retention rate (%) |
---|---|---|---|
#1 | 1 | 1.483 | 56.98 |
2 | 0.993 | ||
10 | 0.935 | ||
20 | 0.845 | ||
x = 0 | 1 | 1.503 | 52.83 |
2 | 0.966 | ||
10 | 0.873 | ||
20 | 0.794 | ||
x = 0.22 | 1 | 1.381 | 91.38 |
2 | 1.313 | ||
10 | 1.271 | ||
20 | 1.262 | ||
x = 0.33 | 1 | 1.488 | 87.97 |
2 | 1.396 | ||
10 | 1.318 | ||
20 | 1.309 | ||
x = 0.44 | 1 | 1.571 | 86.66 |
2 | 1.498 | ||
10 | 1.375 | ||
20 | 1.361 |
Fig. 5 XRD patterns of #1 and La0.96-xYxMg0.04Ni3.47-0.6xAl0.6x (x = 0, 0.22, 0.33, 0.44) superlattice alloys after 20 cycles of hydrogen absorption/desorption: a 10-80°, b 38-48° before cycle, c 38-48° after cycle
Alloy | Phase | Space group | a (Å) | c (Å) | V (Å3) | c/a |
---|---|---|---|---|---|---|
#1 | Ce2Ni7 | P63/mmc(194) | 5.0599 (5.0502) | 24.6170 (24.6077) | 545.82 (543.52) | 4.87 (4.87) |
x = 0 | Ce2Ni7 | P63/mmc(194) | 5.0553 (5.0433) | 24.6053 (24.5394) | 544.57 (540.54) | 4.87 (4.87) |
x = 0.22 | Ce2Ni7 | P63/mmc(194) | 4.9818 (4.9722) | 24.5961 (24.5936) | 528.65 (526.56) | 4.94 (4.94) |
LaNi5 | P6/mmm(191) | 5.0075 (5.0058) | 3.9786 (3.9786) | 86.46 (86.26) | 0.79 (0.79) | |
x = 0.33 | Ce2Ni7 | P63/mmc(194) | 4.9803 (4.9744) | 24.5434 (24.5414) | 527.21 (525.92) | 4.93 (4.93) |
LaNi5 | P6/mmm(191) | 5.0061 (5.0051) | 3.9818 (3.9827) | 86.68 (86.54) | 0.80 (0.80) | |
x = 0.44 | Ce2Ni7 | P63/mmc(194) | 4.9643 (4.9636) | 24.5669 (24.5612) | 524.32 (524.12) | 4.95 (4.95) |
LaNi5 | P6/mmm(191) | 5.0147 (5.0101) | 3.9882 (3.9980) | 86.86 (86.77) | 0.80 (0.80) |
Table 7 Cell parameters of #1 and La0.96-xYxMg0.04Ni3.47-0.6xAl0.6x (x = 0, 0.22, 0.33, 0.44) superlattice alloys after 20 cycles of hydrogen absorption/desorption
Alloy | Phase | Space group | a (Å) | c (Å) | V (Å3) | c/a |
---|---|---|---|---|---|---|
#1 | Ce2Ni7 | P63/mmc(194) | 5.0599 (5.0502) | 24.6170 (24.6077) | 545.82 (543.52) | 4.87 (4.87) |
x = 0 | Ce2Ni7 | P63/mmc(194) | 5.0553 (5.0433) | 24.6053 (24.5394) | 544.57 (540.54) | 4.87 (4.87) |
x = 0.22 | Ce2Ni7 | P63/mmc(194) | 4.9818 (4.9722) | 24.5961 (24.5936) | 528.65 (526.56) | 4.94 (4.94) |
LaNi5 | P6/mmm(191) | 5.0075 (5.0058) | 3.9786 (3.9786) | 86.46 (86.26) | 0.79 (0.79) | |
x = 0.33 | Ce2Ni7 | P63/mmc(194) | 4.9803 (4.9744) | 24.5434 (24.5414) | 527.21 (525.92) | 4.93 (4.93) |
LaNi5 | P6/mmm(191) | 5.0061 (5.0051) | 3.9818 (3.9827) | 86.68 (86.54) | 0.80 (0.80) | |
x = 0.44 | Ce2Ni7 | P63/mmc(194) | 4.9643 (4.9636) | 24.5669 (24.5612) | 524.32 (524.12) | 4.95 (4.95) |
LaNi5 | P6/mmm(191) | 5.0147 (5.0101) | 3.9882 (3.9980) | 86.86 (86.77) | 0.80 (0.80) |
Alloy | Dv50 (μm) | ΔDv (μm) | |
---|---|---|---|
x = 0.22 | Original | 29.36 | − 11.87 |
After cycle | 17.49 | ||
x = 0.33 | Original | 29.30 | − 11.41 |
After cycle | 17.89 | ||
x = 0.44 | Original | 28.89 | − 10.59 |
After cycle | 18.30 |
Table 8 La0.96-xYxMg0.04Ni3.47-0.6xAl0.6x (x = 0.22, 0.33, 0.44) superlattice alloys particle size
Alloy | Dv50 (μm) | ΔDv (μm) | |
---|---|---|---|
x = 0.22 | Original | 29.36 | − 11.87 |
After cycle | 17.49 | ||
x = 0.33 | Original | 29.30 | − 11.41 |
After cycle | 17.89 | ||
x = 0.44 | Original | 28.89 | − 10.59 |
After cycle | 18.30 |
Fig. 9 SEM morphology of #1 and La0.96-xYxMg0.04Ni3.47-0.6xAl0.6x (x = 0, 0.22, 0.33, 0.44) superlattice alloys a1-e1 original sample and a2-e2 hydrogen adsorption/dehydrogenation sample: a1,a2 #1, b1,b2 x = 0, c1,c2 x = 0.22, d1,d2 x = 0.33, e1,e2 x = 0.44
[1] | L.S. Dong, F.Y. Wang, H.H. Wu, M.J. Gao, P.H. Bai, S.Z. Wang, G.L. Wu, J.H. Gao, X.Y. Zhou, X.P. Mao, Acta Metall. Sin. -Engl. Lett. 36, 1925 (2023) |
[2] | W.H. Fan, J.X. Zhao, D.Y. Liu, Q.C. Liang, W.Q. Liu, Q.S. Wang, H. Liu, P. Chen, S. Gao, X.L. Bao, Y. Cheng, X.W. Wang, X. Guo, Acta Metall. Sin. -Engl. Lett. 36, 1023 (2023) |
[3] | Z.Y. Li, S.L. Li, Z.M. Yuan, Y.H. Zhang, Acta Metall. Sin. -Engl. Lett. 32, 961 (2019) |
[4] | H. Liu, W.Q. Liu, Y. Sun, P. Chen, J.X. Zhao, X. Guo, Z.M. Su, Int. J. Hydrog. Energy 45, 11675 (2020) |
[5] | A.M. Elberry, J. Thakur, A. Santasalo-Aarnio, M. Larmi, Int. J. Hydrog. Energy 46, 15671 (2021) |
[6] | W.F. Qiao, D.M. Yin, S.L. Zhao, N. Ding, L. Liang, C.L. Wang, L.M. Wang, M. He, Y. Cheng, Chem. Eng. J. 465, 142837 (2023) |
[7] | M.L. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, D. Hissel, Renew. Sust. Energ. Rev. 146, 111180 (2021) |
[8] | Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, F.S. Pan, Int. J. Miner. Metall. Mater. 29, 32 (2022) |
[9] | S.P. Shet, P.S. Shanmuga, K. Sudhakar, M. Tahir, Int. J. Hydrog. Energy 46, 11782 (2021) |
[10] | B. Cheng, Y.K. Li, X.X. Li, H.B. Ke, L. Wang, T.Q. Cao, D. Wan, B.P. Wang, Y.F. Xue, Acta Metall. Sin. -Engl. Lett. 36, 1113 (2023) |
[11] | Y.H. Zhang, Z.Y. Li, W. Zhang, W.G. Bu, Y. Qi, S.H. Guo, Acta Metall. Sin. -Engl. Lett. 33, 630 (2020) |
[12] | J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrog. Energy 44, 15072 (2019) |
[13] | L. Luo, L.P. Chen, L.R. Li, S.X. Liu, Y.M. Li, C.F. Li, L.F. Li, J.J. Cui, Y.Z. Li, Int. J. Hydrog. Energy 50, 406 (2024) |
[14] | L. Wang, S.J. Zhou, X. Zhang, Q. Luo, Y.Y. Zhao, H.Z. Yan, Q. Li, Int. J. Hydrog. Energy 48, 25797 (2023) |
[15] | U. Ulmer, D. Oertel, T. Diemant, C.B. Minella, T. Bergfeldt, R. Dittmeyer, R.J. Behm, M. Fichtner, A.C.S. Appl, Mater. Interfaces 10, 1662 (2018) |
[16] | M. Balcerzak, M. Nowak, M. Jurczyk, Int. J. Hydrog. Energy 42, 1436 (2017) |
[17] | Y.M. Li, H.P. Ren, Y.H. Zhang, Z.C. Liu, H.W. Zhang, Int. J. Hydrog. Energy 40, 7093 (2015) |
[18] | C.P. Wan, S.Q. Zhao, H. Wang, L.C. Yang, J.W. Liu, L.Z. Ouyang, M. Zhu, Int. J. Hydrog. Energy 48, 1472 (2023) |
[19] | Y.C. Liu, D. Chabane, O. Elkedim, J. Energy Storage 67, 107638 (2023) |
[20] | J.J. Liu, H.H. Cheng, S.M. Han, H.F. Liu, J. Huot, Energy 192, 116617 (2020) |
[21] | Q.A. Zhang, B. Zhao, M.H. Fang, C.R. Liu, Q.M. Hu, F. Fang, D.L. Sun, L.Z. Ouyang, M. Zhu, Inorg. Chem. 51, 2976 (2012) |
[22] | J.J. Liu, X.Y. Chen, J. Xu, S. Zhu, H.H. Cheng, G. Yang, X.B. Han, L. Zhang, Y. Li, S.M. Han, Chem. Eng. J. 418, 129395 (2021) |
[23] | W. Lv, Y.F. Shi, W.P. Deng, J.G. Yuan, Y.H. Yan, Y. Wu, Prog. Nat. Sci.: Mater. Int. 27, 424 (2017) |
[24] | W. Lv, Y.F. Shi, W.P. Deng, J.G. Yuan, Y.H. Yan, Y. Wu, Prog. Nat. Sci.: Mater. Int. 26, 177 (2016) |
[25] | R.Y. Li, H. Lu, X.Y. Pan, J.J. Zhao, W.F. Wang, Y. Li, N. Xi, Q.M. Peng, S.M. Han, L. Zhang, Int. J. Hydrog. Energy 48, 32849 (2023) |
[26] | W. Zhang, D.L. Zhao, Y.H. Zhang, J. Li, S.H. Guo, Y. Qi, J.L. Gao, J. Phys. Chem. Solids 167, 110744 (2022) |
[27] | X.Z. Sun, H.G. Pan, M.X. Gao, R. Li, Y. Lin, S. Ma, Trans. Nonferrous Met. Soc. China 16, 8 (2006) |
[28] | Y.F. Liu, H.G. Pan, M.X. Gao, H. Miao, Y.Q. Lei, Q.D. Wang, Int. J. Hydrog. Energy 33, 124 (2008) |
[29] | B. Liao, Y.Q. Lei, L.X. Chen, G.L. Lu, H.G. Pan, Q.D. Wang, J. Alloys Compd. 415, 239 (2006) |
[30] | S.X. Wu, L. Wang, H.P. Yuan, Q. Luo, Q. Li, K.C. Chou, Rare Met. 42, 1316 (2023) |
[31] | D.H. Wang, Y.C. Luo, L. Kang, R.X. Yan, Rare Met. Mater. Eng. 35, 1379 (2006) |
[32] | R. Tang, Y.N. Liu, C.C. Zhu, J.W. Zhu, G. Yu, Intermetallics 14, 361 (2006) |
[33] | V. Charbonnier, N. Madern, J. Monnier, J. Zhang, V. Paul-Boncour, M. Latroche, Int. J. Hydrog. Energy 45, 11686 (2020) |
[34] | S.Q. Zhao, H. Wang, R.Z. Hu, W. Jiang, J.W. Liu, L.Z. Ouyang, M. Zhu, J. Alloys Compd. 868, 159254 (2021) |
[35] | Z.R. Jia, L. Zhang, Y.M. Zhao, J. Cao, Y. Li, Z.T. Dong, W.F. Wang, S.M. Han, J. Power. Sources 371, 188 (2017) |
[36] | H.G. Pan, Y.F. Liu, M.X. Gao, J. Electrochem. Soc. 152, A326 (2005) |
[37] | Y.C. Xie, G.J. Wu, Y. Li, Y.X. Zhang, Q. Wang, L. Zhang, S.M. Han, Int. J. Hydrog. Energy 48, 30832 (2023) |
[38] | X.P. Dong, Y.F. Chen, J.W. Su, T.Y. Gao, Y.R. Ma, X. Li, Mater. Rep. 34, 15110 (2020) |
[39] | Y.M. Li, B.Y. Duan, Z.C. Liu, Y.H. Zhang, H.P. Ren, Acta Metall. Sin. -Engl. Lett. 31, 897 (2018) |
[40] | Y.M. Li, Y.H. Zhang, H.P. Ren, Acta Metall. Sin. -Engl. Lett. 31, 723 (2018) |
[1] | Yi-Ming Li, Bao-Yu Duan, Zhuo-Cheng Liu, Yang-Huan Zhang, Hui-Ping Ren. Degradation behaviors of La-Mg-Ni-based metal hydride alloys: structural stability and influence on hydrogen storage performances [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(9): 897-909. |
[2] | Yi-Ming Li, Yang-Huan Zhang, Hui-Ping Ren. Degradation Characters of La-Mg-Ni-Based Metal Hydride Alloys: Corrosion and Pulverization Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(7): 723-734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||