Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (7): 1174-1194.DOI: 10.1007/s40195-025-01859-5
Previous Articles Next Articles
Xu Yue1,2, Zhiyong Chen1,2(), Wei Chen3(
), Qingjiang Wang1,2
Received:
2024-11-20
Revised:
2025-01-17
Accepted:
2025-01-23
Online:
2025-07-10
Published:
2025-04-16
Contact:
Zhiyong Chen, zhiyongchen@imr.ac.cn;Wei Chen, weichen813@xjtu.edu.cn
Xu Yue, Zhiyong Chen, Wei Chen, Qingjiang Wang. Hot Deformation Behavior and Processing Map of a Novel Ti750s High-Temperature Titanium Alloy[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1174-1194.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Initial microstructures of Ti750s high-temperature titanium alloy prior to thermal compression: a low-magnification SEM morphology; b high-magnification SEM morphology; c EBSD IPF map and d corresponding reconstruction of the prior β grains. Three directions in the three-dimensional space are defined in the alloy plate, viz., the compression axis (CA), rolling direction (RD), and transverse direction (TD). The EBSD IPF legends are provided as well
Fig. 3 Stress-strain curves of Ti750s alloy compressed at various elevated temperatures at three strain rates: a 920 °C, b 950 °C, c 980 °C, d 1010 °C, e 1040 °C, f 1070 °C
Fig. 4 Hot processing map of Ti750s high-temperature titanium alloy at various strains of a ε = 0.1; b ε = 0.3; c ε = 0.5 and d ε = 0.7. The contour numbers represent the power dissipation rate η, while the shadow area indicates the plastic unstable zone
Fig. 5 Division of various deformation regions in hot processing map of Ti750s alloy at a true strain of 0.7. Six distinct regions were highlighted by dotted-line rectangles for further microstructural investigation
Fig. 6 Microstructural characteristics of region I in the hot processing map in Fig. 5: a 920 °C/0.1 s−1 and b 950 °C/1 s−1. The insets schematically illustrate the samples for microstructural observations cut from the core positions of the compressed samples
Fig. 7 EBSD characteristics of Ti750s alloy compressed at the condition of 920 °C/0.1 s−1: a IPF map and b misorientation angle distribution. Three-dimensional space of the samples and legend for EBSD IPF map were provided as well
Fig. 8 EBSD IPF map of primary α phase in Ti750S alloy subjected to 950 °C/1 s−1. Four representative regions marked I, II, III and IV were chosen for further crystallographic analysis in Fig. 9
Fig. 11 SEM microstructural morphologies of region II in Fig. 5 at various deformation conditions of: a 950 °C/0.1 s−1, b 980 °C/0.1 s−1. The insets schematically illustrate the samples for microstructural observations cut from the core positions of the compressed samples
Fig. 12 Crystallographic characteristics of β phase in Ti750s alloys deformed at 980 °C/0.1 s−1: a IPF-X map, b IPF-Y map, c IPF-Z map, and d corresponding pole figure
Fig. 13 SEM microstructural morphologies of region III in Fig. 5 at various deformation conditions of: a 920 °C/10 s−1 at the low magnification; b within core zone in a; c within dead zone in a; d 950 °C/10 s−1 at the low magnification; e within core zone in d; and f within dead zone in d. The insets schematically illustrate the samples for microstructural observations cut from the positions of the compressed samples
Fig. 14 EBSD characterizations of zone IV and the corresponding reconstruction of original β grains in Ti750s deformed at: a, b and c 1010 °C/1 s−1; d, e and f 1040 °C/1 s−1. a and d IPF maps. b and e Superimposed maps of original β grains and grain boundaries. c and f Only reconstructed original β grains
Fig. 15 EBSD characterizations of zone V and the corresponding reconstruction of original β grains in Ti750s deformed at: a, b and c 1040 °C/0.1 s−1; d, e and f 1070 °C/0.1 s−1. a and d IPF maps. b and e Superimposed maps of original β grains and grain boundaries. c and f Only reconstructed original β grains
Fig. 16 Grain orientation spread in β phase safety zone in Ti750s deformed at: a 1010 °C/1 s−1, b 1040 °C/1 s−1, c 1040 °C/0.1 s−1, and d 1070 °C/0.1 s−1
Fig. 17 Dynamic recrystallization in hot working safety zone at various deformation conditions of: a and b 1010 °C/1 s−1, c and d 1040 °C/0.1 s−1. a and c Showing continuous dynamic recrystallization, b and d indicating discontinuous dynamic recrystallization
Fig. 18 EBSD characterizations of zone VI and the corresponding reconstruction of original β grains in Ti750s deformed at: a, b and c 1010 °C/10 s−1; d, e and f 1040 °C/10 s−1. a and d IPF maps. b and e Superimposed maps of original β grains and grain boundaries. c and f Only reconstructed original β grains
Fig. 19 EBSD characterizations of zone VI and the corresponding reconstruction of original β grains in Ti750s deformed at: a, b and c 1010 °C/10 s−1; d, e and f 1040 °C/10 s−1. a and d IPF maps. b and e Superimposed maps of original β grains and grain boundaries. c and f Only reconstructed original β grains
Fig. 20 High-temperature deformation mechanism of Ti750s alloys within various processing areas. Microstructural characteristics in each area is schematically illustrated as well
[1] | J. Sun, H. Lu, H. Zhang, K. Luo, J. Lu, Mater. Sci. Eng. A 908, 146757 (2024) |
[2] | S. Dey, R.R. Kumar, N. Pai, C.R. Anoop, P. Chakravarthy, S.V. Narayana Murty, Metall. Mater. Trans. A 55, 4072 (2024) |
[3] | Z. Wang, X. Wang, Z. Zhu, J. Alloys Compd. 692, 149 (2017) |
[4] | J. Sun, H. Lu, Y. Liang, K. Luo, J. Lu, Mater. Charact. 219, 114592 (2025) |
[5] | J. Sun, H. Lu, Y. Liang, H. Zhang, K. Luo, J. Lu, Mater. Sci. Eng. A 913, 147002 (2024) |
[6] | Y.Y. Yu, C.M. Liu, T.J. Song, J. Wang, K. Kang, P.F. Yan, J. Phys. Conf. Ser. 2686, 012022 (2024) |
[7] | G.P. Li, D. Li, Y.Y. Liu, S.X. Guan, Q.J. Wang, Acta Metall. Sin.-Engl. Lett. 11, 261 (1998) |
[8] | R. Raj, Metall. Trans. A 12, 1089 (1981) |
[9] | Y.V. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15, 1883 (1984) |
[10] | Y.V. Prasad, Indian J. Technol. 28, 435 (1990) |
[11] | L. Chen, B. Zhang, Y. Yang, T. Zhao, Y. Xu, Q. Wang, B. Zan, J. Cai, K. Wang, X. Chen, J. Mater. Res. Technol. 24, 7638 (2023) |
[12] | J. Yu, Z. Li, C. Qian, S. Huang, J. Mater. Res. Technol. 23, 2275 (2023) |
[13] | Y. Zhu, Z. Huang, J. Fan, L. Qin, Y. Niu, Kovove Mater. 61, 369 (2023) |
[14] | C. Lei, Q. Wang, M. Ebrahimi, D. Li, H. Tang, N. Zhang, H. Cai,Materials16, 4093 (2023) |
[15] | M. Li, J. Li, T. Zhou, S. Xiao, Y. Chen, L. Xu, L. Hu, L. Shi,Intermetallics138, 107336 (2021) |
[16] | W. Peng, W. Zeng, Q. Wang, H. Yu, Mater. Sci. Eng. A 571, 116 (2013) |
[17] | X. Liu, H. Zhang, S. Zhang, W. Peng, G. Zhou, C. Wang, L. Chen, J. Alloys Compd. 968, 172052 (2023) |
[18] | Y. Xiao, Y. Deng, Y. An, L. Yuan, X. Zhan, B. Wang, Mater. Today Commun. 40, 109881 (2024) |
[19] | Y. Chai, Y. Zhu, L. Qin, Y. Luo, Y. Niu, Z. Shao, Mater. Today Commun. 41, 110599 (2024) |
[20] | C. Li, L. Huang, M. Zhao, S. Guo, J. Li, Mater. Sci. Eng. A 814, 141231 (2021) |
[21] | W. Jia, W. Zeng, Y. Zhou, J. Liu, Q. Wang, Mater. Sci. Eng. A 528, 4068 (2011) |
[22] | F. Zarghani, G.R. Ebrahimi, J. Taheri, H.R. Ezatpour, Mater. Today Commun. 37, 107235 (2023) |
[23] | D.C. Hu, L. Wang, N. Wang, M.H. Chen, H.J. Wang, J. Mater. Res. Technol. 18, 4786 (2022) |
[24] | L. Li, G. Ma, H. Huang, H. Xiao, Z. Yuan, Y. Li, R. Zhou, Mater. Charact. 194, 112403 (2022) |
[25] | X. Zhou, L. Fu, J. Cheng, Y. Mao, Mater. Lett. 342, 134326 (2023) |
[26] | P. Zhu, S. Yang, Z. Gao, J. Liu, L. Zhou, J. Mater. Res. Technol. 29, 5271 (2024) |
[27] | Z.B. Zhao, Q.J. Wang, Q.M. Hu, J.R. Liu, B.B. Yu, R. Yang, Acta Mater. 126, 372 (2017) |
[28] | W. Jia, W. Zeng, J. Liu, Y. Zhou, Q. Wang, Mater. Sci. Eng. A 530, 135 (2011) |
[29] | S. Ghosh, A. Hamada, M. Patnamsetty, W. Borek, M. Gouda, A. Chiba, S. Ebied, J. Mater. Res. Technol. 20, 4097 (2022) |
[30] | D. Zhang, X. Dong, Y. Xu, S. Lu, K. Wei, L. Huang, J. Alloys Compd. 959, 170534 (2023) |
[31] | J. Xu, W. Zeng, D. Zhou, W. Chen, S. He, X. Zhang, J. Mater. Sci. Technol. 59, 1 (2020) |
[32] | L. Huang, Z. Sun, J. Cao, Z. Yin, J. Alloys Compd. 861, 158533 (2021) |
[33] | H. Matsumoto, M. Kitamura, Y. Li, Y. Koizumi, A. Chiba, Mater. Sci. Eng. A 611, 337 (2014) |
[34] | J. Xu, W. Zeng, D. Zhou, H. Ma, S. He, W. Chen, J. Alloys Compd. 767, 285 (2018) |
[35] | C. Wu, L. Huang, C.M. Li, Mater. Sci. Eng. A 773, 138851 (2020) |
[36] | M. Nakai, M. Niinomi, H. Liu, T. Kitashima, Mater. Trans. 60, 1749 (2019) |
[37] | L. Li, M.Q. Li, J. Luo, Acta Mater. 94, 36 (2015) |
[38] | X. Su, H. Wang, P. Yang, W. Mao, Acta Metall. Sin. 50, 387 (2014) |
[39] | G. Kanapaakala, V. Subramani, Inst. Mech. Eng. Part L237, 1251 (2023) |
[40] | H. Ji, Z. Peng, W. Pei, L. Xin, Z. Ma, Y. Lu, Mater. Res. Express 7, 046508 (2020) |
[41] | J. Wei, F. Yang, M. Qi, C. Zhang, C. Chen, Z. Guo, J. Alloys Compd. 927, 167061 (2022) |
[42] |
L. Lei, Q. Zhao, C. Wu, Y. Zhao, S. Huang, W. Jia, W. Zeng, J. Mater. Sci. Technol. 99, 101 (2022)
DOI |
[43] | Z.Q. Chen, L.J. Xu, S.Z. Cao, J.K. Yang, Y.F. Zheng, S.L. Xiao, T. Jing, Y.Y. Chen, Trans. Nonferrous Met. Soc. China32, 1513 (2022) |
[44] | Q.Q. Zhu, H.F. Lan, B.S. Lin, D.X. Wang, S. Huang, J.P. Li, J. Alloys Compd. 968, 171964 (2023) |
[45] | Z. Li, K. Ming, B. Li, S. He, B. Miao, S. Zheng, Mater. Sci. Eng. A 882, 145484 (2023) |
[46] | P. Li, Y.P. Duan, K.M. Xue, X.X. Wang, G.Q. Gan, J. Nonferrous Met. 20, 872 (2010) |
[47] | X. Biao, Z. Peng, T. Zhou, Rare Met. Mater. Eng. 51, 4586 (2022) |
[48] | H. Ji, Z. Peng, X. Huang, B. Wang, W. Xiao, S. Wang, Proc. Inst. Mech. Eng. Part E237, 1442 (2023) |
[49] | X. Pan, W. He, X. Huang, X. Wang, X. Shi, W. Jia, L. Zhou, Surf. Coat. Technol. 405, 126670 (2021) |
[1] | Chenghao Liu, Wenchao Dong, Jian Sun, Shanping Lu. Effect of Precipitation Behavior and Deformation Twinning Evolution on the Mechanical Properties of 16Cr-25.5Ni-4.2Mo Superaustenitic Stainless Steel Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 338-352. |
[2] | Long Liu, Zijian Zhou, Jie Yu, Xinguang Wang, Chuanyong Cui, Rui Zhang, Yizhou Zhou, Xiaofeng Sun. Hot Deformation Behavior and Workability of a New Ni-W-Cr Superalloy for Molten Salt Reactors [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1453-1466. |
[3] | Hengrui Hu, Jiayu Qin, Yunpeng Zhu, Jinhui Wang, Xiaoqiang Li, Peipeng Jin. Hot Deformation Behavior and Microstructures Evolution of GNP-Reinforced Fine-Grained Mg Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 407-424. |
[4] | Minhao Li, Liwei Lu, Yuhui Wei, Min Ma, Weiying Huang. Deformation Behavior and Microstructure Evolution of AZ31 Mg Alloy by Forging-Bending Repeated Deformation with Multi-pass Lowered Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1317-1335. |
[5] | Dingcong Cui, Qingfeng Wu, Feng Jin, Chenbo Xu, Mingxin Wang, Zhijun Wang, Junjie Li, Feng He, Jinglong Li, Jincheng Wang. Heterogeneous Deformation Behaviors of an Inertia Friction Welded Ti2AlNb Joint: an In-situ Study [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 611-622. |
[6] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
[7] | Hongbin Zhang, Kang Chen, Zhongwei Wang, Haiping Zhou, Chengcheng Shi, Shengxue Qin, Jie Liu, Tingjun Lv, Jian Xu. Thermal Deformation Behavior and Processing Map of a Novel CrFeNiSi0.15 Medium Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1870-1882. |
[8] | Shuohong Gao, Xingchen Yan, Cheng Chang, Xinliang Xie, Qingkun Chu, Zhaoyang Deng, Bingwen Lu, Min Liu, Hanlin Liao, Nouredine Fenineche. Finished surface morphology, microstructure and magnetic properties of selective laser melted Fe-50wt% Ni permalloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1439-1452. |
[9] | Jialin Yang, Xing Li, Hanbo Yao, Yingchun Guan. Interfacial Features of Stainless Steel/Titanium Alloy Multi-metal Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1357-1364. |
[10] | Zishu Chai, Kexuan Zhou, Qingfeng Wu, Zhijun Wang, Quan Xu, Junjie Li, Jincheng Wang. Deformation Behaviors of an Additive-Manufactured Ni32Co30Cr10Fe10Al18 Eutectic High Entropy Alloy at Ambient and Elevated Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1607-1616. |
[11] | Xuejian Lin, Hongjun Huang, Fuyu Dong, Yue Zhang, Xiaoguang Yuan, Bowen Zheng, Xiaojiao Zuo. Hot Deformation Behaviors in Ti-6Al-4V/(TiB+TiC) Composites [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1747-1757. |
[12] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[13] | Xin Cai, Xiao-Qiang Hu, Lei-Gang Zheng, Dian-Zhong Li. Hot Deformation Behavior and Processing Maps of 0.3C-15Cr-1Mo-0.5N High Nitrogen Martensitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 693-704. |
[14] | Le Zhang, Wei Wang, M. Babar Shahzad, Yi-Yin Shan, Ke Yang. Hot Deformation Behavior of an Ultra-High-Strength Fe-Ni-Co-Based Maraging Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1161-1172. |
[15] | Yi-Tao Wang, Jian-Bo Li, Yun-Chang Xin, Xian-Hua Chen, Muhammad Rashad, Bin Liu, Yong Liu. Hot Deformation Behavior and Hardness of a CoCrFeMnNi High-Entropy Alloy with High Content of Carbon [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 932-943. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||