Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (7): 1195-1206.DOI: 10.1007/s40195-025-01849-7
Previous Articles Next Articles
Yong Hou1, Haiyu Liu1, Yao Wang1, Yu Zhang1, Yayun Zhang1, Feng Liu1,2()
Received:
2024-11-01
Revised:
2025-01-04
Accepted:
2025-01-19
Online:
2025-07-10
Published:
2025-04-05
Contact:
Feng Liu, liufeng@nwpu.edu.cn
About author:
First author contact:Yong Hou, Haiyu Liu, and Yao Wang have contributed equally to this work and should be considered co-first authors.
Yong Hou, Haiyu Liu, Yao Wang, Yu Zhang, Yayun Zhang, Feng Liu. Thermo-Kinetic Understanding of the Correlation Between Austenite Reverse Transformation and Mechanical Properties for Medium Manganese Steel[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1195-1206.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic diagram for the planar interface ($\text{I}$) upon austenite reverse transformation, which separates the austenite ($\gamma$) and the ferrite ($\alpha$) and moves toward the ferrite with the velocity $v$ along the direction normal to the γ/α interface. Note that a single closed system is considered because there is no solute fluxed at the interface of the austenite ($\text{L}$) and the ferrite ($\text{R}$), which is different from the inner interface ($\text{I}$), the austenite ($\gamma$) and the ferrite ($\alpha$) with concentration ($u_{\alpha }^{i},u_{\gamma }^{i},u_{\alpha }^{{i*}},u_{\gamma }^{{i*}}$), solute fluxes ($J_{\alpha }^{i}$, $J_{\gamma }^{i},J_{\alpha }^{{i*}},J_{\gamma }^{{i*}}$), and chemical potential ($\mu _{\alpha }^{i},\mu _{\gamma }^{i},\mu _{\alpha }^{{i*}},\mu _{\gamma }^{{i*}}$). The lengths of $\text{LI}$ and $\text{LR}$ are $l$ and $S$, respectively
Fig. 2 Concentration profiles of a carbon and b manganese are plotted at different time: the initial time t = 0, an intermediate time t, and the infinite time t=$\infty$ when the austenite-ferrite equilibrium is reached
Fig. 3 Microstructure of the specimen before the ART. a An EBSD map filled with lath martensite before the heat treatment, in Fe-0.92C-8.06Mn (in at.%) alloy. b Counts of different lath widths in a, where the mean width is 1.01 μm
Fig. 4 Evolution of the calculated phase transformation dynamics. a Dilatation of the sample as a function of temperature. b Variation of austenite fraction with transformed time at 620, 640, 660 ℃ calculated by the current model and the Kuang’s model. c, d C and Mn diffusion profiles at various time at 660 ℃, respectively. Note that the $\gamma$ phase grows from the left to the right in the cell of the $\alpha$ phase
620 ℃ | 640 ℃ | 660 ℃ | |
---|---|---|---|
${\chi }_{\text{C}}$ (J mol−1 at.%−1) | 290.1 | 266.7 | 244.0 |
${\chi }_{\text{Mn}}$ (J mol−1 at.%−1) | − 233.4 | − 208.9 | − 233.3 |
${f}_{\gamma }^{\text{eq}}$ | 0.27 | 0.52 | 0.78 |
Table 1 Thermodynamic and kinetic factors governing the phase transformation at the three considered temperatures
620 ℃ | 640 ℃ | 660 ℃ | |
---|---|---|---|
${\chi }_{\text{C}}$ (J mol−1 at.%−1) | 290.1 | 266.7 | 244.0 |
${\chi }_{\text{Mn}}$ (J mol−1 at.%−1) | − 233.4 | − 208.9 | − 233.3 |
${f}_{\gamma }^{\text{eq}}$ | 0.27 | 0.52 | 0.78 |
Fig. 5 Evolution of experimental phase transformation dynamics. a Dilatation of the samples as a function of time at 620, 640, 660 ℃, respectively. b XRD patterns of the samples treated for 30 min at different temperatures. c Volume fraction of austenite treated at different temperatures for 30 min. d Calculated evolution and experimental evolution of γ fraction as functions of time
Fig. 6 Changes in Gibbs free energy of phases. a Gibbs free energy of the austenite phase as a function of temperature and carbon content. b Gibbs free energy of the ferrite phase as a function of temperature and manganese content (Thermo-Calc)
Fig. 7 Evolution of the thermodynamic driving force, the kinetic energy barrier, and generalized stability. a Evolution of thermodynamic driving force and the kinetic energy barrier as a function of the isothermal temperature. b Variation of the driving force and generalized stability with isothermal temperature and transition fraction
Fig. 8 Mechanical properties: a engineering stress-strain curves of the ART620-180, ART620-600, ART620-1200, and ART620-1800 samples, b summary of yield strength and uniform elongation
180 s | 600 s | 1200 s | 1800 s | |
---|---|---|---|---|
620 ℃ | 0.101 (A1) | 0.120 (A2) | 0.143 (A3) | 0.161 (A4) |
640 ℃ | 0.190 (B1) | 0.217 (B2) | 0.246 (B3) | 0.274 (B4) |
660 ℃ | 0.240 (C1) | 0.279 (C2) | 0.341 (C3) | 0.395 (C4) |
Table 2 Transition fractions at different temperature and holding time (come from Fig. 5(d)) and the corresponding symbols (shown in Fig. 8(b))
180 s | 600 s | 1200 s | 1800 s | |
---|---|---|---|---|
620 ℃ | 0.101 (A1) | 0.120 (A2) | 0.143 (A3) | 0.161 (A4) |
640 ℃ | 0.190 (B1) | 0.217 (B2) | 0.246 (B3) | 0.274 (B4) |
660 ℃ | 0.240 (C1) | 0.279 (C2) | 0.341 (C3) | 0.395 (C4) |
[1] | D.W. Suh, S.J. Kim, Scr. Mater. 126, 63 (2017) |
[2] | Y. Ma, Mater. Sci. Technol. 33, 1713 (2017) |
[3] | J. Shi, H.F. Xu, J. Zhao, W.Q. Cao, C. Wang, C.Y. Wang, J. Li, H. Dong, Acta Metall. Sin.-Engl. Lett. 25, 111 (2012) |
[4] | S. Ahmad, L.F. Lv, L.M. Fu, H.R. Wang, W. Wang, A.D. Shan, Acta Metall. Sin.-Engl. Lett. 32, 361 (2019) |
[5] | B.J. Hu, Q.Y. Zheng, C.N. Jia, P. Liu, Y.K. Luan, C.W. Zheng, D.Z. Li, Acta Metall. Sin.-Engl. Lett. 35, 1068 (2022) |
[6] | T. Akbay, R.C. Reed, C. Atkinson, Acta Mater. 42, 1469 (1994) |
[7] | C. Atkinson, T. Akbay, R.C. Reed, Acta Mater. 43, 2013 (1995) |
[8] | J.W. Christian, Equilibrium and general kinetic theory(Pergamon Press, Oxford, 1975), p. 19 |
[9] | G.P. Krielaart, J. Sietsma, S. Van Der Zwaag, Mater. Sci. Eng. A 237, 216 (1997) |
[10] | M.G. Mecozzi, C. Bos, J. Sietsma, Acta Mater. 88, 302 (2015) |
[11] | D. An, S. Pan, Q. Ren, Q. Li, B.W. Krakauer, M. Zhu, Scr. Mater. 178, 207 (2020) |
[12] | W.W. Kuang, H.F. Wang, X. Li, J.B. Zhang, Q. Zhou, Y.H. Zhao, Acta Mater. 159, 16 (2018) |
[13] | J. Odqvist, M. Hillert, J. Ågren, Acta Mater. 50, 3213 (2002) |
[14] | J. Svoboda, F.D. Fischer, P.H. Mayrhofer, Acta Mater. 56, 4896 (2008) |
[15] | F.D. Fischer, J. Svoboda, H. Petryk, Acta Mater. 67, 1 (2014) |
[16] | F.D. Fischer, K. Hackl, J. Svoboda, Acta Mater. 108, 347 (2016) |
[17] | W.W. Kuang, H.F. Wang, J.B. Zhang, F. Liu, Acta Mater. 120, 415 (2016) |
[18] | F. Liu, T.L. Wang, Acta Metall. Sin. 57, 55 (2020) |
[19] | J. Sietsma, S. van der Zwaag, Acta Mater. 52, 4143 (2004) |
[20] | C. Bos, J. Sietsma, Scr. Mater. 57, 1085 (2007) |
[21] | M. Gouné, F. Danoix, J. Ågren, Y. Bréchet, C.R. Hutchinson, M. Militzer, G. Purdy, S. van der Zwaag, H. Zurob, Mater. Sci. Eng. R 92, 1 (2015) |
[22] | O. Dmitrieva, D. Ponge, G. Inden, J. Millán, P. Choi, J. Sietsma, D. Raabe, Acta Mater. 59, 364 (2011) |
[23] | M. Ollat, M. Militzer, V. Massardier, D. Fabregue, E. Buscarlet, F. Keovilay, M. Perez, Comp. Mater. Sci. 149, 282 (2018) |
[24] | D.M. Herlach, Adv. Space Res. 11, 255 (1991) |
[25] | L.K. Huang, W.T. Lin, Y.B. Zhang, D. Feng, Y.J. Li, X. Chen, K. Niu, F. Liu, Acta Mater. 201, 167 (2020) |
[26] | W.D. Murray, F. Landis, J. Heat Transf.-Trans. ASME 81, 106 (1959). https://doi.org/10.1115/1.4008149 |
[27] |
J.T. Benzing, A. Kwiatkowski da Silva, L. Morsdorf, J. Bentley, D. Ponge, A. Dutta, J. Han, J.R. McBride, B. Van Leer, B. Gault, D. Raabe, J.E. Wittig, Acta Mater. 166, 512 (2019)
DOI |
[28] | D. An, S.L. Chen, D.K. Sun, S.Y. Pan, B.W. Krakauer, M.F. Zhu, Comp. Mater. Sci. 166, 210 (2019) |
[29] | L. Chen, X.R. Zhang, B.L. Deng, Heat Transfer. Eng. 37, 302 (2016) |
[30] | Y. Zhang, Y.Q. He, Y.Y. Zhang, S.J. Song, F. Liu, Scr. Mater. 227, 115311 (2023) |
[31] | Y.Q. He, S.J. Song, J.L. Du, H.R. Peng, Z.G. Ding, H.Y. Hou, L.K. Huang, Y.C. Liu, F. Liu, J. Mater. Sci. Technol. 127, 225 (2022) |
[32] | Y.Y. Zhang, L.K. Huang, K.X. Song, F. Liu, J. Mater. Res. Technol. 30, 5145 (2024) |
[33] | P. Wu, Y.B. Zhang, J.Q. Hu, S.J. Song, Y. Li, H.Y. Wang, G. Yuan, Z.D. Wang, S.Z. Wei, F. Liu, J. Mater. Sci. Technol. 134, 163 (2023) |
[34] | T.P. Zhou, C.Y. Wang, C. Wang, W.Q. Cao, Z.J. Chen, Mater. Sci. Eng. A 798, 140147 (2020) |
[35] | F. Liu, J. Mater. Sci. Technol. 155, 72 (2023) |
[36] | H.Y. Liu, P. Wu, K.X. Song, Y.X. Zhang, G. Yuan, F. Liu, J. Mater. Res. Technol. 32, 2651 (2024) |
[1] | K.Fujiyama. APPLICATION OF THE UNIFIED STATISTICAL MATERIAL DATABASE FOR DESIGN AND LIFE/RISK ASSESSMENT OF HIGH TEMPERATURE COMPONENTS [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(4): 338-344 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||