Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (7): 1219-1236.DOI: 10.1007/s40195-025-01848-8
Previous Articles Next Articles
Mengjun Chen1, Tingping Hou1(), Shi Cheng1, Feng Hu1, Tao Yu2, Xianming Pan3, Yuanyuan Li1, Kaiming Wu1(
)
Received:
2024-10-23
Revised:
2025-01-07
Accepted:
2025-01-11
Online:
2025-07-10
Published:
2025-04-14
Contact:
Tingping Hou, houtingping@wust.edu.cn;Kaiming Wu, wukaiming@wust.edu.cn
Mengjun Chen, Tingping Hou, Shi Cheng, Feng Hu, Tao Yu, Xianming Pan, Yuanyuan Li, Kaiming Wu. A Comprehensive Exploration of the Relationship between Microstructure Optimization and Strength Enhancement in Low-Density 5Al-5Mn Steel[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1219-1236.
Add to citation manager EndNote|Ris|BibTeX
C | Si | Mn | Cr | Ni | Mo | Nb | Al | Fe |
---|---|---|---|---|---|---|---|---|
0.29 | 1.54 | 5.08 | 0.29 | 0.24 | 0.25 | 0.024 | 4.94 | Bal. |
Table 1 Chemical composition of alloy (wt%)
C | Si | Mn | Cr | Ni | Mo | Nb | Al | Fe |
---|---|---|---|---|---|---|---|---|
0.29 | 1.54 | 5.08 | 0.29 | 0.24 | 0.25 | 0.024 | 4.94 | Bal. |
Fig. 1 a Phase volume fractions diagram of 0.3C-5Al-5Mn-1.5Si steel at equilibrium temperatures. FCC and BCC are considered α-ferrite and γ-austenite. b Heat treatment schematic of the Q&T process. The annealing temperatures are set to be I 980 °C, II 1080 °C, III 1180 °C
Fig. 2 a EBSD band contrast diagram (left) and phase distribution diagram (right) of 1080 °C annealed sample. b-d SEM micrographs of samples annealed at different temperatures: b 980 °C, c 1080 °C, d 1180 °C. BCC phase includes martensite (M) and δ-ferrite (δ-F), while the FCC phase is defined as retained austenite (RA). Block-like RA distributes at the edges of island-like M&RA mixtures while martensite occupies the interior regions
Fig. 3 EPMA line scan results of samples annealed at a 980 °C, b 1080 °C, c 1180 °C. The carbon concentration of δ-F is lowest, and the carbon concentration of M is slightly lower than that of RA due to partition in tempering
Fig. 4 XRD patterns and calculated retained austenite fraction and carbon content of the three groups of specimens a, c before, b, d after tensile test. The (220) γ peak is significantly weakened after tensile test
Group | VM (vol.%) | Vδ (vol.%) | Before VA (vol.%) | After VA (vol.%) |
---|---|---|---|---|
980 °C | 26.4 | 56.1 | 17.5 | 14.2 |
1080 °C | 44.4 | 42.6 | 13.0 | 10.5 |
1180 °C | 24.2 | 63.3 | 12.5 | 11.0 |
Table 2 Volume fraction of each tissue before and after the tensile test calculated from EBSD result
Group | VM (vol.%) | Vδ (vol.%) | Before VA (vol.%) | After VA (vol.%) |
---|---|---|---|---|
980 °C | 26.4 | 56.1 | 17.5 | 14.2 |
1080 °C | 44.4 | 42.6 | 13.0 | 10.5 |
1180 °C | 24.2 | 63.3 | 12.5 | 11.0 |
Fig. 8 Average grain size calculated by equivalent diameter, geometrically necessary dislocations (GND) density, and LAGBs and HAGBs percentage distinguished by the software AZtecCrystal [44] before (blue) and after (red) tensile test of different groups
Fig. 9 True stress-strain curves for three sample groups at tensile rates of a 2 mm/min and b 20 mm/min, c, d the corresponding yield strength, tensile strength, and elongation curves, e summary of UTS for medium-Mn steels with different Al contents (Mn < 12 wt%, Al > 3 wt%) [10,25,26,46,47,48,49,50,51]
Annealing temperature (°C) | Tensile rate (mm/min) | Rm (MPa) | Rp0.2 (MPa) | A (%) |
---|---|---|---|---|
980 | 2 | 1008 ± 45 | 689 ± 10 | 9.1 ± 0.4 |
20 | 1125 ± 63 | 744 ± 11 | 11.4 ± 0.5 | |
1080 | 2 | 1079 ± 36 | 985 ± 25 | 6.7 ± 0.3 |
20 | 1190 ± 56 | 1080 ± 32 | 8.9 ± 0.1 | |
1180 | 2 | 1036 ± 28 | 961 ± 22 | 5.3 ± 0.3 |
20 | 1021 ± 30 | 1011 ± 29 | 5.7 ± 0.5 |
Table 3 Tensile properties of samples under different annealing temperatures and tensile rates
Annealing temperature (°C) | Tensile rate (mm/min) | Rm (MPa) | Rp0.2 (MPa) | A (%) |
---|---|---|---|---|
980 | 2 | 1008 ± 45 | 689 ± 10 | 9.1 ± 0.4 |
20 | 1125 ± 63 | 744 ± 11 | 11.4 ± 0.5 | |
1080 | 2 | 1079 ± 36 | 985 ± 25 | 6.7 ± 0.3 |
20 | 1190 ± 56 | 1080 ± 32 | 8.9 ± 0.1 | |
1180 | 2 | 1036 ± 28 | 961 ± 22 | 5.3 ± 0.3 |
20 | 1021 ± 30 | 1011 ± 29 | 5.7 ± 0.5 |
Fig. 10 Fracture morphologies of the experimental steel at a tensile rate of 20 mm/min: a1, a2 980 °C, b1, b2 1080 °C, and c1, c2 1180 °C. The cleavage plane is highlighted by yellow dashed lines
Fig. 11 a TEM diagram of 1080 °C group before tensile test. Selected area electron diffraction patterns of b δ-F, c film-like RA, d block RA, respectively
Fig. 12 TEM diagram of 1080 °C group after tensile test. a Jagged retained austenite (RA) distributed at the edge of martensite and retained austenite (M&RA) mixture. b The deformation-induced martensite distributed around jagged RA. c, d Dislocation pile-ups and dislocation tangles at grain boundaries (GB) or the interface of δ-ferrite (δ-F) and M&RA mixture
Fig. 13 C-J model and modified C-J model of different groups: a1, a2 980 °C, b1, b2 1080 °C, c1, c2 1180 °C. I: stage one, II: stage two, R2: coefficient of determination
Group | 980 °C | 1080 °C | 1180 °C |
---|---|---|---|
HM model | |||
I Slope (n) | 0.56 | 1.04 | 1.20 |
IISlope (n) | 0.28 | 0.32 | 0.64 |
C-J model | |||
I Slope (n-1) | −1.75 | −0.74 | −0.98 |
II Slope (n-1) | −0.89 | −2.83 | −3.04 |
Modified C-J model | |||
I Slope (1-n) | −2.96 | −0.70 | −0.82 |
II Slope (1-n) | −3.13 | −8.50 | −4.47 |
ε (strain points) | |||
Stage Ito I | 0.05187 | 0.04432 | 0.03818 |
Table 4 Slope and turning strain points for each stage of three simulation models
Group | 980 °C | 1080 °C | 1180 °C |
---|---|---|---|
HM model | |||
I Slope (n) | 0.56 | 1.04 | 1.20 |
IISlope (n) | 0.28 | 0.32 | 0.64 |
C-J model | |||
I Slope (n-1) | −1.75 | −0.74 | −0.98 |
II Slope (n-1) | −0.89 | −2.83 | −3.04 |
Modified C-J model | |||
I Slope (1-n) | −2.96 | −0.70 | −0.82 |
II Slope (1-n) | −3.13 | −8.50 | −4.47 |
ε (strain points) | |||
Stage Ito I | 0.05187 | 0.04432 | 0.03818 |
Fig. 14 a Correlation of tensile strength with prior-austenite fraction. b Correlation of total elongation with transformed austenite fraction. (calculated from the data of EBSD in Table 2). Comparation of 1080 °C group and 1180 °C group samples in c tensile strength and d plasticity. Note that the areas of each phase in the pie are consistent with their volume fractions in the steel, and the bigger areas of red regions correspond to higher contribution to strength or plasticity
Group | σ0 (MPa) | σs (MPa) | σg (MPa) | σd (MPa) | σcal (MPa) | σexp (MPa) | σmodified (MPa) | (σgσn)1/2 (MPa) |
---|---|---|---|---|---|---|---|---|
980 °C | 53[ | 374 | 276.5 | 214 | 917.5 | 1125 | 1234 | 593 |
1080 °C | 53[ | 374 | 263.9 | 224 | 913.9 | 1190 | 1187 | 536 |
1180 °C | 53[ | 374 | 254.6 | 216 | 897.6 | 1021 | 964 | 321 |
Table 5 Comparation of tensile strength calculated using the original and modified equations of different groups; σcal, σs, σg and σd are calculated by Eqs. (S7-S10) in Supplementary Material
Group | σ0 (MPa) | σs (MPa) | σg (MPa) | σd (MPa) | σcal (MPa) | σexp (MPa) | σmodified (MPa) | (σgσn)1/2 (MPa) |
---|---|---|---|---|---|---|---|---|
980 °C | 53[ | 374 | 276.5 | 214 | 917.5 | 1125 | 1234 | 593 |
1080 °C | 53[ | 374 | 263.9 | 224 | 913.9 | 1190 | 1187 | 536 |
1180 °C | 53[ | 374 | 254.6 | 216 | 897.6 | 1021 | 964 | 321 |
Fig. 16 Mechanism during tensile deformation: a1-a3 980 °C, b1-b3 1080 °C, and c1-c3 1180 °C. OM and FM represent original martensite and fresh martensite formed during the TRIP effect
[1] | H. Yi, K.Y. Lee, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 528, 5900 (2010) |
[2] | S. Chen, R. Rana, A. Haldar, R.K. Ray, Prog. Mater. Sci. 89, 345 (2017) |
[3] |
V.S.Y. Injeti, Z.C. Li, B. Yu, R.D.K. Misra, Z.H. Cai, H. Ding, J. Mater. Sci. Technol. 34, 745 (2018)
DOI |
[4] |
K. Lu,Science328, 319 (2010)
DOI PMID |
[5] |
J. Morris,Science320, 1022 (2008)
DOI PMID |
[6] | C. Zhao, R. Song, L. Zhang, F. Yang, T. Kang, Mater. Des. 91, 348 (2016) |
[7] | H. Luo, H. Dong, Mater. Sci. Eng. A 626, 207 (2015) |
[8] | B. Hu, G. Shen, Z. Wang, S. Li, Y. Wang, H. Luo, J. Mater. Sci. Technol. 145, 156 (2023) |
[9] | B. Hu, B.B. He, G.J. Cheng, H.W. Yen, M.X. Huang, H.W. Luo, Acta Mater. 174, 131 (2019) |
[10] | P. Chen, X.W. Li, P.F. Wang, G.D. Wang, J.Y. Guo, R.D. Liu, H.L. Yi, J. Mater. Res. Technol. 17, 1338 (2022) |
[11] | H. Kim, D.W. Suh, N.J. Kim, Sci. Technol. Adv. Mater. 14, 014205 (2013). |
[12] | G. Frommeyer, E.J. Drewes, B. Engl, Rev. Métallurgie97, 1245 (2000) |
[13] | Y. Mikio,T. Satoshi, in Science Reports of the Research Institutes, Tohoku University. Ser. A, Physics, Chemistry and Metallurgy, ed. by Tohoku University (Tohoku University, 1956), vol. 8, pp. 193-204. |
[14] | S. Chatterjee, M. Murugananth, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 23, 819 (2007) |
[15] | D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, S.J. Kim, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41, 397 (2010). |
[16] | J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51, 2611 (2003) |
[17] | J.G. Speer, A.M. Streicher, D. Matlock, F. Rizzo, G. Krauss, Quenching and Partitioning: A Fundamentally New Process to Create High Strength Trip Sheet Microstructures. Paper presented at the Austenite Formation and Decomposition, TMS/ISS, Chicago, Illinois, 2003. |
[18] | R. Rana, S.B. Singh (Eds.), Automotive Steels(Woodhead Publishing, Cambridge, 2017), pp.289-316. |
[19] | Y.G. Deng, Y.P. Yang, R.D.K. Misra, J. Mater. Res. Technol. 25, 5741 (2023) |
[20] | E.J. Seo, L. Cho, Y. Estrin, B.C. De Cooman, Acta Mater. 113, 124 (2016) |
[21] | H.L. Yi, P. Chen, Z.Y. Hou, N. Hong, H.L. Cai, Y.B. Xu, D. Wu, G.D. Wang, Scr. Mater. 68, 370 (2013) |
[22] | Z. Yan, Q. Ye, Y. Yan, J. Mater. Sci. Technol. 201, 44 (2024) |
[23] | X. Tan, W. Lu, N. Guo, B. Song, X. Rao, Y. Xu, S. Guo, Mater. Sci. Eng. A 872, 144968 (2023) |
[24] | B. Hu, H. Luo, J. Alloys Compd. 725, 684 (2017) |
[25] | X. Li, R. Song, N. Zhou, J. Li, Mater. Sci. Eng. A 709, 97 (2018) |
[26] | R. Chen, P. Chen, X.W. Li, Mater. Sci. Eng. A 862, 144475 (2023) |
[27] | H. Cui, D. Chen, K.T. Zhang, Mater. Sci. Technol. 36, 484 (2020) |
[28] | G. Collette, C. Crussard, A. Kohn, J. Plateau, G. Pomey, M. Weisz, Rev. Met. Paris54, 433 (1957) |
[29] | P.B. Jaoul, J. Mech. Phys. Solids 5, 95 (1957) |
[30] | J. Lian, Z. Jiang, J. Liu, Mater. Sci. Eng. A 147, 55 (1991) |
[31] | M. Umemoto, K. Tsuchiya, Z.G. Liu, S. Sugimoto, Metall. Mater. Trans. A 31, 1785 (2000) |
[32] | Computational Materials Engineering - Thermo-Calc Software, https://thermocalc.com/. Acceessed 24 Dec 2024. |
[33] | A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, Acta Mater. 56, 16 (2008) |
[34] | N.H. Van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. Van Der Zwaag, Acta Mater. 53, 5439 (2005) |
[35] | X. Tan, D. Ponge, W. Lu, Y. Xu, H. He, J. Yan, D. Wu, D. Raabe, Acta Mater. 186, 374 (2020) |
[36] | K. Sugimoto, N. Usui, M. Kobayashi, S. Hashimoto, ISIJ Int. 32, 1311 (1992) |
[37] | E.R. Jette, F. Foote, J. Chem. Phys. 3, 605 (1935) |
[38] | Z.S. Basinski, W. Hume-Rothery, A.L. Sutton, Proc. R. Soc. A-Math. Phy. 229, 459 (1955) |
[39] | M.S. Baek, K.S. Kim, T.W. Park, J. Ham, K.A. Lee, Mater. Sci. Eng. A 785, 139375 (2020) |
[40] |
K. Chen, H.B. Li, Z.H. Jiang, F.B. Liu, C.P. Kang, X.D. Ma, B.J. Zhao, J. Mater. Sci. Technol. 72, 81 (2021)
DOI |
[41] | R. Valerie, D. Helen, C. Ian, Curr. Opin. Solid State Mater. Sci. 5, 3 (2001) |
[42] | H. Luo, X. Wang, Z. Liu, Z. Yang, J. Mater. Sci. Technol. 51, 130 (2020) |
[43] |
L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, R.O. Ritchie,Science368, 1347 (2020)
DOI PMID |
[44] | OxfordInstruments - Nanoanalysis - AztecCrystal, https://nano.oxinst.com/azteccrystal/. Accessed 15 Aug 2024. |
[45] | S. Zhang, W. Zhou, S. Zhou, F. Hu, S. Yershov, K. Wu, J. Mater. Res. Technol. 24, 2385 (2023) |
[46] | Z.H. Cai, H. Ding, X. Xue, Q.B. Xin, Mater. Sci. Eng. A 560, 388 (2013) |
[47] | B.K. Sahoo, V.C. Srivastava, B. Mahato, S.G. Chowdhury, Mater. Sci. Eng. A 799, 140100 (2021) |
[48] | S.J. Park, B. Hwang, K.H. Lee, T.H. Lee, D.W. Suh, H.N. Han, Scr. Mater. 68, 365 (2013) |
[49] | M. Liu, C. Song, Z. Cui, J. Mater. Sci. Technol. 78, 247 (2021) |
[50] | S.S. Sohn, K. Choi, J. Kwak, N.J. Kim, S. Lee, Acta Mater. 78, 181 (2014) |
[51] | C.H. Seo, K.H. Kwon, K. Choi, K.H. Kim, J.H. Kwak, S. Lee, N.J. Kim, Scr. Mater. 66, 519 (2012) |
[52] |
M. Wang, M. Huang, Acta Mater. 188, 551 (2020)
DOI |
[53] | C. Hu, C.P. Huang, Y.X. Liu, A. Perlade, K.Y. Zhu, M.X. Huang, Acta Mater. 245, 118629 (2023) |
[54] | J.H. Hollomon, Trans. Metall. Soc. AIME162, 268 (1945) |
[55] | J. Cao, F.G. Li, X.K. Ma, Z.K. Sun, Trans. Nonferrous Metal. Soc. China27, 2443 (2017) |
[56] | A. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl, W. Bleck, Int. J. Plast. 43, 128 (2013) |
[57] | X. Tan, Y. Xu, X. Yang, D. Wu, Mater. Sci. Eng. A 589, 101 (2014) |
[58] |
B. He, B. Hu, H. Yen, G. Cheng, Z. Wang, H. Luo, M. Huang,Science357, 1029 (2017)
DOI PMID |
[59] | B. Sun, D. Palanisamy, D. Ponge, B. Gault, F. Fazeli, C. Scott, S. Yue, D. Raabe, Acta Mater. 164, 683 (2019) |
[60] | Q.L. Yong, Secondary Phase in Steels(Metallurgical Industry Press, Beijing, 2006) |
[61] | J. Li, F. Sun, W. Xu, Scr. Metall. Mater. 24, 1393 (1990) |
[62] | A.S. Caroline, S.R. Wayne, W.E. Kevin,Nat. Methods9, 671 (2012) |
[63] | S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387, 158 (2004) |
[64] | G.B. Olson, M. Cohen, Metall. Trans. A 6, 791 (1975) |
[65] | G.Q. Li, Y.F. Shen, N. Jia, X.W. Feng, W.Y. Xue, Mater. Sci. Eng. A 848, 143430 (2022) |
[1] | Qi Zhou, Yufeng Xia, Yu Duan, Baihao Zhang, Yuqiu Ye, Peitao Guo, Lu Li. Microstructure and Mechanical Properties of Yb-Containing AZ80 Cast Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1095-1108. |
[2] | Yuxuan Li, Xi Zhao, Shuchang Li, Yihan Gao, Rui Guo. Precipitation Behavior and Strengthening and Toughening Mechanisms of Pre-fabricated Strong Basal Texture AZ80 + 0.4%Ce Alloy Under Room-Temperature Pre-deformation Coupled with Dual-Stage Aging Conditions [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1127-1144. |
[3] | Wangjian Yu, Rui Hu, Guoqiang Shang, Xian Luo, Hong Wang. Correlation Mechanism Between Microstructure and Fatigue Crack Propagation Behavior of Ti-Mo-Cr-V-Nb-Al Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 981-1002. |
[4] | Wei Pan, Bin Xu, Chong Li. Effects of Groove Shape on Microstructure and Mechanical Responses of Laser-Directed Energy Deposition-Repaired GH4099 Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1003-1011. |
[5] | Xiang Fei, Naicheng Sheng, Zhaokuang Chu, Han Wang, Shijie Sun, Yuping Zhu, Shigang Fan, Jinjiang Yu, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Design Strategy for Synergistic Strengthening of W and Al in High-W Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1057-1068. |
[6] | Yao Zhang, Hongtao Wang, Zhongtao Lu, Zifeng Li, Pengfei Wen, Xiaobin Feng, Guodong Li, Bo Duan, Pengcheng Zhai. Effect of Ag Vacancies on the Mechanical Properties of Ag2S Thermoelectric Semiconductor [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 869-875. |
[7] | Yaoxiang Geng, Keying Lv, Chunfeng Zai, Zhijie Zhang, Anil Kunwar. A High-Strength TiB2-Modified Al-Si-Mg-Zr Alloy Fabricated by Laser Powder-Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 542-554. |
[8] | Haijian Liu, Tianle Li, Xifeng Li, Huiping Wu, Zhiqiang Wang, Jun Chen. Strength Optimization of Diffusion-Bonded Ti2AlNb Alloy by Post-Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 614-626. |
[9] | X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641. |
[10] | Yang Feng, Shuai Wang, Yang Zhao, Li-Qing Chen. Achieving High-Temperature Oxidation and Corrosion Resistance in Fe-Mn-Cr-Al-Cu-C TWIP Steel via Annealing Control [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 642-656. |
[11] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
[12] | Xiaotong Lu, Pingyun Yuan, Zhengquan Wang, Xiaocheng Li, Hanyuan Liu, Wenhao Zhou, Kun Sun, Yongliang Mu. Mechanical Properties and Corrosion Behavior of Porous Zn Alloy as Biodegradable Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 367-382. |
[13] | Yifan Li, Shengyao Ma, Xinrui Zhang, Tong Xi, Chunguang Yang, Hanyu Zhao, Ke Yang. Copper Precipitation Behavior and Mechanical Properties of Cu-Bearing Ferritic Stainless Steel with Different Cr Addition [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 383-395. |
[14] | Hongbin Liu, Zhenqiang Xing, Yitong Yang, Jingyu Pang, Wen Li, Zhengwang Zhu, Long Zhang, Aimin Wang, Haifeng Zhang, Hongwei Zhang. A Novel BCC/B2 Structural Nb38Ti35Al15V6Cr4(TaHfMoW)2 Refractory High-Entropy Alloy with Excellent Specific Yield Strength-Plasticity Synergy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 396-406. |
[15] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||