Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (7): 1207-1218.DOI: 10.1007/s40195-025-01852-y
Previous Articles Next Articles
Zhongxue Wang1,3, Le Ren1, Yating Zhang1, Mengcheng Zhou2, Xinfang Zhang1,2()
Received:
2024-12-02
Revised:
2025-01-06
Accepted:
2025-01-19
Online:
2025-07-10
Published:
2025-04-10
Contact:
Xinfang Zhang, xfzhang@ustb.edu.cn
Zhongxue Wang, Le Ren, Yating Zhang, Mengcheng Zhou, Xinfang Zhang. Realizing Ultra-fast Spheroidization of GCr15 Bearing Steel by Analyzing the Correlation of Carbide Dissolution Law and Pulsed Electric Current Parameters Through Machine Learning[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1207-1218.
Add to citation manager EndNote|Ris|BibTeX
Fe | C | Cr | Mn | Si | P | S |
---|---|---|---|---|---|---|
Bal. | 1.0 | 1.57 | 0.35 | 0.25 | 0.02 | 0.02 |
Table 1 Chemical composition of GCr15 bearing steel (wt%)
Fe | C | Cr | Mn | Si | P | S |
---|---|---|---|---|---|---|
Bal. | 1.0 | 1.57 | 0.35 | 0.25 | 0.02 | 0.02 |
Sample | Frequency (Hz) | Duty cycle (%) | Current density (A/mm2) | Furnace temperature (°C) | Processing temperature (°C) |
---|---|---|---|---|---|
1 | 10 | 5 | 27 | 580 | 720 |
2 | 10 | 5 | 27 | 600 | 740 |
3 | 10 | 5 | 27 | 620 | 760 |
4 | 10 | 5 | 27 | 640 | 780 |
5 | 100 | 5 | 27 | 400 | 720 |
6 | 100 | 5 | 27 | 420 | 740 |
7 | 100 | 5 | 27 | 440 | 760 |
8 | 100 | 5 | 27 | 460 | 780 |
9 | 1000 | 5 | 27 | 30 | 720 |
10 | 1000 | 5 | 27 | 50 | 740 |
11 | 1000 | 5 | 27 | 70 | 760 |
12 | 1000 | 5 | 27 | 90 | 780 |
13 | 200 | 5 | 40 | 30 | 720 |
14 | 200 | 5 | 40 | 50 | 740 |
15 | 200 | 5 | 40 | 70 | 760 |
16 | 200 | 5 | 40 | 90 | 780 |
17 | 200 | 10 | 32 | 30 | 720 |
18 | 200 | 10 | 32 | 50 | 740 |
19 | 200 | 10 | 32 | 70 | 760 |
20 | 200 | 10 | 32 | 90 | 780 |
21 | 200 | 20 | 26 | 30 | 720 |
22 | 200 | 20 | 26 | 50 | 740 |
23 | 200 | 20 | 26 | 70 | 760 |
24 | 200 | 20 | 26 | 90 | 780 |
25 | 200 | 40 | 20 | 30 | 720 |
26 | 200 | 40 | 20 | 50 | 740 |
27 | 200 | 40 | 20 | 70 | 760 |
28 | 200 | 40 | 20 | 90 | 780 |
Table 2 Pulsed electric current parameters
Sample | Frequency (Hz) | Duty cycle (%) | Current density (A/mm2) | Furnace temperature (°C) | Processing temperature (°C) |
---|---|---|---|---|---|
1 | 10 | 5 | 27 | 580 | 720 |
2 | 10 | 5 | 27 | 600 | 740 |
3 | 10 | 5 | 27 | 620 | 760 |
4 | 10 | 5 | 27 | 640 | 780 |
5 | 100 | 5 | 27 | 400 | 720 |
6 | 100 | 5 | 27 | 420 | 740 |
7 | 100 | 5 | 27 | 440 | 760 |
8 | 100 | 5 | 27 | 460 | 780 |
9 | 1000 | 5 | 27 | 30 | 720 |
10 | 1000 | 5 | 27 | 50 | 740 |
11 | 1000 | 5 | 27 | 70 | 760 |
12 | 1000 | 5 | 27 | 90 | 780 |
13 | 200 | 5 | 40 | 30 | 720 |
14 | 200 | 5 | 40 | 50 | 740 |
15 | 200 | 5 | 40 | 70 | 760 |
16 | 200 | 5 | 40 | 90 | 780 |
17 | 200 | 10 | 32 | 30 | 720 |
18 | 200 | 10 | 32 | 50 | 740 |
19 | 200 | 10 | 32 | 70 | 760 |
20 | 200 | 10 | 32 | 90 | 780 |
21 | 200 | 20 | 26 | 30 | 720 |
22 | 200 | 20 | 26 | 50 | 740 |
23 | 200 | 20 | 26 | 70 | 760 |
24 | 200 | 20 | 26 | 90 | 780 |
25 | 200 | 40 | 20 | 30 | 720 |
26 | 200 | 40 | 20 | 50 | 740 |
27 | 200 | 40 | 20 | 70 | 760 |
28 | 200 | 40 | 20 | 90 | 780 |
Fig. 3 Microstructures of GCr15 bearing steel treated by pulsed electric current at different frequencies: a 10 Hz at 720 °C; b 1000 Hz at 720 °C; c 10 Hz at 740 °C; d 1000 Hz at 740 °C; e 10 Hz at 760 °C; f 1000 Hz at 760 °C; g 10 Hz at 780 °C; h 1000 Hz at 780 °C
Fig. 4 Microstructures of GCr15 bearing steel treated by pulsed electric current at different duty cycle and current density: a-d 720 °C, 740 °C, 760 °C and 780 °C, respectively, for 40 A/mm2 and 5% duty cycle; e-h 720 °C, 740 °C, 760 °C and 780 °C, respectively, for 32 A/mm2 and 10% duty cycle; i-l 720 °C, 740 °C, 760 °C and 780 °C, respectively, for 20 A/mm2 and 40% duty cycle
Fig. 5 Carbide proportion gained by Image J after pulsed electric current treatment of different parameters: a1-a4 720 °C, 740 °C, 760 °C and 780 °C, respectively, for E27-5-10; b1-b4 correspond to 720 °C, 740 °C, 760 °C and 780 °C, respectively, for E27-5-1000; c1-c4 correspond to 720 °C, 740 °C, 760 °C and 780 °C, respectively, for E40-5-200; d1-d4 correspond to 720 °C, 740 °C, 760 °C and 780 °C, respectively, for E32-10-200; e1-e4 correspond to 720 °C, 740 °C, 760 °C and 780 °C, respectively, for E20-40-200
Fig. 10 a Adaptation value changes with the number of particles and the iteration time; b locally enlarged image corresponding to green dotted box in a
Fig. 13 Microstructures of GCr15 bearing steel treated by pulsed electric current of a 60 min, and b 90 min; c microstructure by conventional spheroidizing annealing; d schematic diagram of spheroidizing annealing by pulsed electric current
[1] | W.A. Metwally, M.K. Samy, Steel Res. Int. 65, 455 (1994) |
[2] |
Y. Su, L.J. Miao, X.F. Yu, T.M. Liu, L. Liu, J.L. Liu, J. Mater. Res. Technol. 15, 2820 (2021)
DOI |
[3] | J. Fu, Appl. Phys. A Solids Surf. 122, 416 (2016) |
[4] | H. Bhadeshia, Prog. Mater. Sci. 57, 268 (2012) |
[5] | X.H. Lu, R.S. Lu, Z.H. Jin, D.S. Qian, J. Lan, L. Hua, J. Mater. Res. Technol. 24, 1744 (2023) |
[6] | F. Yin, L. Hua, H.J. Mao, X.H. Han, Mater. Des. 43, 393 (2013) |
[7] | N.V. Luzginova, L. Zha, J. Sietsma, Metall. Mater. Trans. A 39, 513 (2008) |
[8] | J.W. Lee, J.C. Lee, Y.S. Lee, K.T. Park, W.J. Nam, J. Mater. Process. Technol. 209, 5300 (2009) |
[9] | Z.X. Li, C.S. Li, J. Zhang, B. Qiao, Z.Z. Li, Metall. Mater. Trans. A 46, 3220 (2015) |
[10] | Z.X. Li, C.S. Li, J.Y. Ren, B.Z. Li, J. Zhang, Y.Q. Ma, Mater. Sci. Eng. A 674, 262 (2016) |
[11] | H.B. Pereira, E.A.A. Echeverri, D.M.A. Centeno, S.S. Souza, L.F. Bauri, M.D. Manfrinato, M. Masoumi, L.H.D. Alves, H. Goldenstein, J. Mater. Res. Technol. 23, 1903 (2023) |
[12] | A. Fernandez-Vicente, M. Carsí, F. Penalba, O.A. Ruano, Fatigue Fract. Eng. Mater. Struct. 29, 817 (2006) |
[13] | D.V. Wilson, Acta Metall. 5, 293 (1957) |
[14] | C.S. Li, Z.X. Li, J.Y. Ren, X.Y. Tu, B.Z. Li, Steel Res. Int. 90, 1800470 (2019) |
[15] | S.L. Zhang, X.J. Sun, H. Dong, Mater. Sci. Eng. A 432, 324 (2006) |
[16] | Z.X. Li, C.S. Li, J. Zhang, B.Z. Li, X.D. Pang, Metall. Mater. Trans. A 47, 3607 (2016) |
[17] | X.D. Huo, Y.L. Ning, L.J. Li, Z.W. Lv, S.J. Chen, Mater. Res. Express 7, 016559 (2020) |
[18] | Y.K. Sun, D. Wu, J. Iron. Steel Res. Int. 16, 61 (2009) |
[19] | Y.C. Li, C.X. Chen, Z.M. Fan, D.Q. Jiang, S.N. Shuai, T.S. Tu, Z.M. Ren, J. Mater. Res. Technol. 31, 329 (2024) |
[20] | H.Y. Wu, D.X. Han, Y. Du, X.H. Gao, L.X. Du, Mater. Today Commun. 30, 103152 (2022) |
[21] | Y.C. Li, S.Y. Chen, F.H. Zhu, Z. Zhang, W.D. Xuan, J. Wang, Z.M. Ren,Metals12, 1293 (2022) |
[22] | Y.C. Li, C.J. Li, S.Y. Chen, F.H. Zhu, W.D. Xuan, J. Wang, Z.M. Ren, ISIJ Int. 62, 1275 (2022) |
[23] | X.B. Liu, W.J. Lu, X.F. Zhang, Acta Mater. 183, 51 (2022) |
[24] | S.Y. Qin, X. Ba, X.F. Zhang, Scr. Mater. 178, 24 (2020) |
[25] | L. Ren, C.H. Liu, X.F. Zhan, Mater. Charact. 208, 113650 (2024) |
[26] | X.L. Wang, Y.B. Wang, Y.M. Wang, B.Q. Wang, J.D. Guo, Appl. Phys. Lett. 91, 163112 (2007) |
[27] | X.S. Huang, L.G. Yan, X.F. Zhang, Scr. Mater. 202, 114017 (2021) |
[28] | X.B. Liu, D. Zhang, H. Wang, Y. Yan, X.F. Zhang, Corros. Sci. 181, 109219 (2021) |
[29] | J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir, Acta Mater. 51, 4487 (2003) |
[30] | L. Ren, X.B. Liu, X.F. Zhang, Mater. Charact. 194, 112410 (2022) |
[31] | Y.N. Xu, W.Q. Wang, F.Y. Yu, F.Y. Yu, Y.P. Wang, M. Qi, Y.P. Zhao, Y.N. Wang, J. Mater. Res. Technol. 18, 44 (2022) |
[32] | A. Balasubramanian, D.S. Srikumar, G. Raja, G. Saravanan, S. Mohan, Surf. Eng. 25, 389 (2009) |
[33] | M. Vakili-Azghandi, A. Fattah-Alhosseini, Metall. Mater. Trans. A 48, 4681 (2017) |
[34] | H.F. Dai, G.F. Xu, Y. Li, G.Y. Guo, X.Y. Peng, Mater. Charact. 194, 112386 (2022) |
[35] | L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, NPJ Comput. Mater. 2, 1 (2016) |
[36] |
Q. Lu, S. van der Zwaag, W. Xu, J. Mater. Sci. Technol. 33, 1577 (2017)
DOI |
[37] | R.F. Zhang, J.F. Li, Q. Li, Y.S. Qi, Z.R. Zeng, Y. Qiu, X.B. Chen, S.K. Kairy, S. Thomas, N. Birbilis, Corros. Sci. 150, 268 (2019) |
[38] | C. Qian, R.K. Tan, W. Ye, Acta Mater. 225, 117548 (2022) |
[39] | X. Zheng, X. Zhang, T.T. Chen, I. Watanabe, Adv. Mater. 35, 2302530 (2023) |
[40] | H. Ji, H. Wang, Q. Chen, X.B. Ma, Y.K. Cai, Ocean Eng. 300, 117371 (2024) |
[41] | J.J. Wu, X.K. Cheng, H. Huang, C. Fang, L. Zhang, X.K. Zhao, L. Zhang, J.J. Xing, Front. Energy Res. 10, 937035 (2023) |
[42] | Y. Dai, M. Khandelwal, Y.G. Qiu, J. Zhou, M. Monjezi, P.X. Yang, Neural Comput. Appl. 34, 1 (2022) |
[43] | B. Leo, Mach. Learn. 45, 3 (2001) |
[44] | J. Li, B. Cao, H.H. Chen, L.J. Li, Mater. Lett. 333, 133672 (2023) |
[45] | X.Y. Teng, J.C. Pang, F. Liu, C.L. Zou, X. Bai, S.X. Li, Z.F. Zhang, Acta Metall. Sin.-Engl. Lett. 36, 1536 (2023) |
[46] | H.J. Friedman, Ann. Stat. 29, 1189 (2001) |
[47] | J.J. Ma, S. Zhang, X.J. Liu, J.Q. Wang, Bioresour. Technol. 3899, 129820 (2023) |
[48] | J.H. Kang, P.E.J. Rivera-Díaz-del-Castillo, Mater. Sci. 67, 364 (2013) |
[49] | J.Q. Hao, S.Y. Qin, L.G. Yan, X.F. Zhang, Mater. Sci. Technol. 38, 689 (2022) |
[50] | X.L. Wang, J.D. Guo, Y.M. Wang, X.Y. Wu, B.Q. Wang, Appl. Phys. Lett. 89, 061910 (2006) |
[51] | Y.N. Xu, W.Q. Wang, F.Y. Yu, Y.P. Wang, M. Qi, Y.P. Zhao, Y.N. Wang, J. Mater. Res. Technol. 18, 44 (2022) |
[52] | W. Zhao, R.F. Liu, J. Yan, X. Wang, H.W. Zhang, W.X. Wang, J. Mater. Res. Technol. 21, 2156 ( 2022) |
[53] | M.C. Zhou, Y.X. Dai, C.H. Liu, S.L. Ding, X.F. Zhang, Acta Metall. Sin.-Engl. Lett. 37, 1 (2024) |
[54] | K. Jeong, S.W. Jin, S.G. Kang, J.W. Park, H.J. Jeong, S.T. Hong, S.H. Cho, M.J. Kim, H.N. Han, Acta Mater. 232, 117925 (2022) |
[55] | S.T. Zhao, R.P. Zhang, Y. Chong, X.Q. Li, A. Abu-Odeh, E. Rothchild, D. Chrzan, M. Asta, J.W. Morris Jr., A.M. Minor, Nat. Mater. 20, 468 (2021) |
[56] | X. Li, Q. Zhu, Y.R. Hong, H. Zheng, J. Wang, J.W. Wang, Z. Zhang, Nat. Commun. 13, 6503 (2022) |
[57] | M.Q. Li, Y.D. Shen, K. Luo, Q. An, P. Gao, P.H. Xiao, Y. Zou, Nat. Mater. 22, 958 (2023) |
[58] | K. Okazaki, M. Kagawa, H. Conrad, Mater. Sci. Eng. 45, 109 (1980) |
[59] | X.L. Liao, Q.J. Zhai, J. Luo, W.J. Chen, Y.Y. Gong, Acta Mater. 55, 3103 (2007) |
[1] | Hanqiang Liu, Xing Li, Jibo Su, Chaoyun Yang, Yikun Luan, Dianzhong Li. Pitting Corrosion Behaviour in 9Cr18 Bearing Steel Under Salt Spray Environment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1237-1245. |
[2] | Yating Zhang, Biqian Li, Shu Li, Mengcheng Zhou, Shengli Ding, Xinfang Zhang. Using Machine Learning Methods to Predict the Ductile-to-Brittle Transition Temperature Shift in RPV Steel Under Different Pulse Current Parameters [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1029-1040. |
[3] | X. X. Zhang, E. Walz, A. Langebeck, J. Rebelo Kornmeier, A. Kriele, V. Luzin, M. Adveev, A. Bohlen, M. Hofmann. Macroscopic and Microscopic Residual Stresses in Nickel-Aluminum Bronze Matrix Composite Surface Deposits Manufactured via Laser Melt Injection [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 570-586. |
[4] | Tianyi Zeng, Zirui Luo, Hao Chen, Wei Wang, Ke Yang. Flow Behavior and Dynamic Recrystallization Mechanism of CSS-42L Bearing Steel During Hot Compression Deformation [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 465-480. |
[5] | Chenghao Liu, Wenchao Dong, Jian Sun, Shanping Lu. Effect of Precipitation Behavior and Deformation Twinning Evolution on the Mechanical Properties of 16Cr-25.5Ni-4.2Mo Superaustenitic Stainless Steel Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 338-352. |
[6] | Han Wang, Shijie Sun, Naicheng Sheng, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Effect of Carbon on the Microstructures and Stress Rupture Properties of a Polycrystalline Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 151-163. |
[7] | Qiao-Sheng Xia, Dong-Peng Hua, Qing Zhou, Ye-Ran Shi, Xiang-Tao Deng, Kai-Ju Lu, Hai-Feng Wang, Xiu-Bing Liang, Zhao-Dong Wang. Atomic-Scale Insights into Damage Mechanisms of GGr15 Bearing Steel Under Cyclic Shear Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1265-1278. |
[8] | Mengcheng Zhou, Yaxiong Dai, Changhao Liu, Shengli Ding, Xinfang Zhang. Migration Behavior of Impurity Iron in Silicon Melt Under Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 889-903. |
[9] | Yan-Hui Wang, Hua-Qiang Sun, Wen-Jing Feng, Lei-Jie Zhao, Xiang Chen, Qing-An Chen, Hai-Tao Sun, Jian-Jun Wang, Zhi-Nan Yang. Notably Accelerated Nano-Bainite Transformation via Increasing Undissolved Carbides Content on GCr15Si1Mo Bearing Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 703-712. |
[10] | Xiaoliang Jia, Guhui Gao, Xiaolu Gui, Chun Feng, R. D. K. Misra, Bingzhe Bai. Uncovering Microstructure-Property Relationship in Ni-Alloyed Fe-Mn-Al-C Low-Density Steel Treated by Hot-Rolling and Air-Cooling Process [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 713-725. |
[11] | Zhihong Zhu, Wenhang Ning, Xuanyang Niu, Yuhong Zhao. Machine Learning-Based Research on Tensile Strength of SiC-Reinforced Magnesium Matrix Composites via Stir Casting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 453-466. |
[12] | Xiang Fei, Naicheng Sheng, Shijie Sun, Shigang Fan, Jinjiang Yu, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Multi-scale Study of the Formation and Evolution of M6C Carbides in High-Tungsten Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 1995-2007. |
[13] | Xin Li, Chenglei Wang, Laichang Zhang, Shengfeng Zhou, Jian Huang, Mengyao Gao, Chong Liu, Mei Huang, Yatao Zhu, Hu Chen, Jingya Zhang, Zhujiang Tan. Machine Learning-Based Comprehensive Prediction Model for L12 Phase-Strengthened Fe-Co-Ni-Based High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1858-1874. |
[14] | Le Xia, Haijun Su, Quandong Hu, Yinuo Guo, Peixin Yang, Hongliang Gao, Minghui Yu, Min Guo, Zhuo Zhang, Lin Liu, Hengzhi Fu. Effects of Post-Heat Treatment and Carbide Precipitates on Strength-Ductility Balance of GH3536 Superalloy Prepared by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1667-1679. |
[15] | Kun Yi, Siqi Xiang, Mengcheng Zhou, Xinfang Zhang, Furui Du. Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1511-1522. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||