Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (10): 1752-1766.DOI: 10.1007/s40195-024-01737-6
Previous Articles Next Articles
Bo Li, Yonghua Duan(), Mengnie Li(
), Lishi Ma(
), Shanju Zheng, Mingjun Peng
Received:
2023-12-17
Revised:
2024-03-25
Accepted:
2024-04-15
Online:
2024-10-10
Published:
2024-07-22
Contact:
Yonghua Duan, duanyh@kust.edu.cn;
Mengnie Li, limengnie@kust.edu.cn;
Lishi Ma, lsma@kust.edu.cnBo Li, Yonghua Duan, Mengnie Li, Lishi Ma, Shanju Zheng, Mingjun Peng. First-Principles Calculations on Electronic Structure, Adhesion Strength, and Interfacial Stability of Mg(0001)/AlB2(0001) Nucleation Interface[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1752-1766.
Add to citation manager EndNote|Ris|BibTeX
Phase | Method | a | c | B | G | E |
---|---|---|---|---|---|---|
Mg | GGA-PBE (This work) | 3.206 | 5.153 | 35.36 | 16.79 | 43.85 |
GGA-PW91 (This work) | 3.208 | 5.151 | 34.42 | |||
LDA-CAPZ (This work) | 3.144 | 5.051 | ||||
GGA-PBE [28] | 3.221 | 5.172 | 35.6 | |||
GGA-PW91 [28] | 3.225 | 5.174 | 34.7 | |||
GGA-PBE [29] | 3.228 | 5.1856 | ||||
Cal. [30] | 35.6 | 17.3 | 44.6 | |||
Cal. [31] | 36.9 | 19.4 | 49.5 | |||
Exp. [30] | 3.209 | 5.211 | 35.4 | |||
Exp. [32] | 45 | |||||
Exp. [33] | 3.210 | 5.171 | 35.6 | |||
AlB2 | GGA-PBE (This work) | 3.012 | 3.255 | 180.32 | 142.3 | 335.8 |
GGA-PW91 (This work) | 3.011 | 3.308 | 173.45 | |||
LDA-CAPZ (This work) | 2.982 | 3.253 | 182.57 | |||
GGA-PBE [34] | 3.00 | 3.29 | 182.34 | |||
Exp. [35] | 3.01 | 3.25 | 170 | |||
GGA[36] | 2.998 | 3.286 | 176.8 | |||
Cal. [37] | 186 | 140 | 336 | |||
Cal. [38] | 191 | |||||
Cal. [39] | 132 |
Table 1 Calculated values of lattice constants (in Å) and elastic moduli (bulk modulus B, shear modulus G, and Young’s modulus E (in GPa)) and volume (in Å3/cell) using different exchange-correlation functionals
Phase | Method | a | c | B | G | E |
---|---|---|---|---|---|---|
Mg | GGA-PBE (This work) | 3.206 | 5.153 | 35.36 | 16.79 | 43.85 |
GGA-PW91 (This work) | 3.208 | 5.151 | 34.42 | |||
LDA-CAPZ (This work) | 3.144 | 5.051 | ||||
GGA-PBE [28] | 3.221 | 5.172 | 35.6 | |||
GGA-PW91 [28] | 3.225 | 5.174 | 34.7 | |||
GGA-PBE [29] | 3.228 | 5.1856 | ||||
Cal. [30] | 35.6 | 17.3 | 44.6 | |||
Cal. [31] | 36.9 | 19.4 | 49.5 | |||
Exp. [30] | 3.209 | 5.211 | 35.4 | |||
Exp. [32] | 45 | |||||
Exp. [33] | 3.210 | 5.171 | 35.6 | |||
AlB2 | GGA-PBE (This work) | 3.012 | 3.255 | 180.32 | 142.3 | 335.8 |
GGA-PW91 (This work) | 3.011 | 3.308 | 173.45 | |||
LDA-CAPZ (This work) | 2.982 | 3.253 | 182.57 | |||
GGA-PBE [34] | 3.00 | 3.29 | 182.34 | |||
Exp. [35] | 3.01 | 3.25 | 170 | |||
GGA[36] | 2.998 | 3.286 | 176.8 | |||
Cal. [37] | 186 | 140 | 336 | |||
Cal. [38] | 191 | |||||
Cal. [39] | 132 |
Atomic layer | |
---|---|
5-3 | − 1947.95 |
7-5 | − 1947.92 |
9-7 | − 1947.91 |
11-9 | − 1947.92 |
13-11 | − 1947.94 |
Table 2 Energy difference σE of Mg(0001) surface. ${\sigma }_{\text{E}}={\sigma }_{\text{slab}}^{N}-{\sigma }_{\text{slab}}^{N-2}$ (${\sigma }_{\text{slab}}^{N}$ and ${\sigma }_{\text{slab}}^{N-2}$ are the total energies of Mg(0001) slabs containing N and N-2 atomic layers, respectively, and N is 5, 7, 9, 11, and 13)
Atomic layer | |
---|---|
5-3 | − 1947.95 |
7-5 | − 1947.92 |
9-7 | − 1947.91 |
11-9 | − 1947.92 |
13-11 | − 1947.94 |
Fig. 1 a AlB2 bulk, b low-index surface with different terminations as a function of B chemical potential (μ labeled ΔμB), the vertical black dashed line of the figure indicates the stability range of AlB2, and c the surface configuration of the low-index AlB2 surface: 9-Al (0001), 9-B (0001)
Fig. 2 Surface energies of a AlB2(0001) surface, including Al(0001) terminal and B (0001) terminal, b AlB2(10 $\overline{1 }$ 0) surface, including Al(10 $\overline{1 }$ 0) terminal and B(10 $\overline{1 }$ 0) Surface energy of terminal and c AlB2(11 $\overline{2 }$ 0) surface as a function of slab thickness L. Poor B and rich B correspond to ΔμB = − 0.225 eV and 0 eV, respectively
Species | a (Å) | b (Å) | γ (◦) | Ω (Å2) | A1 (Å2) | A2 (Å2) | ξ (%) |
---|---|---|---|---|---|---|---|
Mg(0001) | 3.209 | 3.209 | 120 | ||||
AlB2(0001) | 3.007 | 3.007 | 120 | ||||
Al-OT | 3.092 | 3.092 | 120 | 8.280 | 8.918 | 7.831 | 0.011 |
Al-MT | 3.108 | 3.108 | 120 | 8.366 | 8.918 | 7.831 | 0.001 |
Al-HCP | 3.108 | 3.108 | 120 | 8.366 | 8.918 | 7.831 | 0.001 |
B-OT | 3.108 | 3.108 | 120 | 8.366 | 8.918 | 7.831 | 0.001 |
B-MT | 3.108 | 3.108 | 120 | 8.366 | 8.918 | 7.831 | 0.001 |
B-HCP | 3.092 | 3.092 | 120 | 8.280 | 8.918 | 7.831 | 0.011 |
Table 3 Surface and interface parameters, interfacial areas, angle, areas of Mg (0001) and AlB2(0001) slabs, and the interface mismatch of Mg (0001)/AlB2(0001)
Species | a (Å) | b (Å) | γ (◦) | Ω (Å2) | A1 (Å2) | A2 (Å2) | ξ (%) |
---|---|---|---|---|---|---|---|
Mg(0001) | 3.209 | 3.209 | 120 | ||||
AlB2(0001) | 3.007 | 3.007 | 120 | ||||
Al-OT | 3.092 | 3.092 | 120 | 8.280 | 8.918 | 7.831 | 0.011 |
Al-MT | 3.108 | 3.108 | 120 | 8.366 | 8.918 | 7.831 | 0.001 |
Al-HCP | 3.108 | 3.108 | 120 | 8.366 | 8.918 | 7.831 | 0.001 |
B-OT | 3.108 | 3.108 | 120 | 8.366 | 8.918 | 7.831 | 0.001 |
B-MT | 3.108 | 3.108 | 120 | 8.366 | 8.918 | 7.831 | 0.001 |
B-HCP | 3.092 | 3.092 | 120 | 8.280 | 8.918 | 7.831 | 0.011 |
Fig. 3 Master view and top view of three different stacking sequences of B-terminated and Al-terminated interface: “OT” stacking, “MT” stacking and “HCP” stacking. Six staking sequences for Mg/AlB2 interface models: a B-OT, b B-MT, c Al-HCP, d Al-MT, e B-HCP, f Al-OT
Fig. 4 Side view of "MT" stacking sequences for Al-terminated and B-terminated Mg(0001)/AlB2(0001) interface: a and b Al -terminated "MT" stacking, c and d B-terminated "MT" stacking before (up) and after (down) optimization (Red ball: B, pink ball: Al, green ball: Mg)
Fig. 5 Total energy and the ideal Wad as a function of the separation distance between Mg(0001) and AlB2(0001) surface slabs for different Al, and B terminations in interfacial configurations of the Mg(0001)/AlB2(0001) interface: a Al-MT, Al-HCP and Al-OT, b B-MT, B-OT and B-HCP
[1] |
T.M. Pollock, Science 328,986 (2010)
DOI PMID |
[2] | W. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, M. Ferry, Nat. Mater. 14, 1229 (2015) |
[3] | L.S. Wang, J.H. Jiang, B. Saleh, Q.Y. Xie, Q. Xu, H. Liu, A.B. Ma, Acta Metall. Sin. -Engl. Lett. 33, 1180 (2020) |
[4] | P. Li, D. Hou, E.H. Han, R. Chen, Z. Shan, Acta Metall. Sin. -Engl. Lett. 33, 1477 (2020) |
[5] | P.L. Zhang, Y.H. Zhao, R.P. Lu, Z.B. Ding, H. Hou, Acta Metall. -Sin. Engl. Lett. 32, 550 (2018) |
[6] | E. Suneesh, M. Sivapragash, Mater. Manuf. Process. 33, 1324 (2018) |
[7] | J. Fayomi, A.P.I. Popoola, O.M. Popoola, Ceram. Int. 49, 12423 (2023) |
[8] |
K. Zhang, M. Pang, Y. Zhan, J. Phys. Chem. Solids 124, 212 (2019)
DOI |
[9] | X. Chen, Q. Li, J. Chen, L. Zhu, J. Rare Earth 37,1351 (2019) |
[10] | G. Zhang, Y. Wang, Z. Liu, S. Liu, J. Magnes. Alloy. 7, 272 (2019) |
[11] | S. Xiao, Y. Shao, Y. Li, H. Yin, Y. Shen, B. Cui, Sci. China Inform. Sci. 65, 112101 (2022) |
[12] | I.L. Svetlov, D.V. Zaitsev, N.A. Kuzmina, A.V. Zavodov, Phys. Met. Metallogr. 121, 254 (2020) |
[13] | L.Y. Jia, W.B. Du, J.L. Fu, Z.H. Wang, K. Liu, S.B. Li, X. Du, Acta Metall. Sin. -Engl. Lett. 34, 39 (2020) |
[14] | M.X. Zhang, P.M. Kelly, M.A. Easton, J.A. Taylor, Acta Mater. 53, 1427 (2005) |
[15] | T.E. Quested, Mater. Sci. Technol. 20, 1357 (2004) |
[16] | Y. Jia, S. Wang, D. Shu, J. Alloys Compd. 821, 153504 (2020) |
[17] | S.F. Liu, Y. Zhang, H. Han, B. Li, J. Alloys Compd. 487, 202 (2009) |
[18] | A. Feldhoff, E. Pippel, J. Woltersdorf, J. Microsc-Oxford. 185, 122 (1997) |
[19] | J. Hu, Z. Xiao, Q. Wang, Z. Shen, X. Li, J. Huang, Mater. Today Commun. 27, 102399 (2021) |
[20] | T. Yang, X. Chen, W. Li, X. Han, P. Liu, J. Phys. Chem. Solids 167, 110705 (2022) |
[21] | X. Li, Q. Hui, D. Shao, J. Chen, P. Wang, Z. Jia, C. Li, Z. Chen, N. Cheng, Sci. China Mater. 59, 28 (2016) |
[22] | S. Liu, Y. Zhang, H. Han, B. Li, J. Alloy. Compd. 487, 202 (2009) |
[23] | Y. Sun, L. Bao, Z. Kong, Y. Duan, J. Mater. Res. 37, 1859 (2022) |
[24] | B. Li, Y. Duan, M. Li, M. Peng, S. Zheng, Mater. Chem. Phys. 313, 128771 (2023) |
[25] | M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Mat. 14, 2717 (2002) |
[26] | P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964) |
[27] | J.P. Perdew, K. Burke, M. Ernzerhof, Rev. Lett. 77, 3865 (1996) |
[28] | R. Liu, X. Yin, K. Feng, R. Xu, Comp. Mater. Sci. 149, 373 (2018) |
[29] | K. Li, Z.G. Sun, F. Wang, N.G. Zhou, X.W. Hu, Appl. Surf. Sci. 270, 584 (2013) |
[30] | S. Ganeshan, S.L. Shang, Y. Wang, Z.K. Liu, Acta Mater. 57, 3876 (2009) |
[31] | A.R. Wazzan, L.B. Robinson, Phys. Rev. 155, 586 (1967) |
[32] | J. Cheng, T. Guo, M.R. Barnett, J. Magnes. Alloy. 10, 169 (2022) |
[33] | Y. Nie, Y. Xie, Phys. Rev. B 75, 174 (2007) |
[34] | D.J. Siegel, L.G. Hector Jr., J.B. Adams, Surf. Sci. 498, 321 (2002) |
[35] | L.M. Liu, S.Q. Wang, H.Q. Ye, Acta Mater. 52, 3681 (2004) |
[36] | P. Hohenberg, W.J.P.R. Kohn, Phys. Rev. 136, B864 (1964) |
[37] | K. Lie, R. Høier, R. Brydson, Phys. Rev. B 61, 1786 (2000) |
[38] | I.R. Shein, A.L. Ivanovskii, J. Phys. Condens. Matter 20, 8106 (2008) |
[39] | Y. Duan, Y. Sun, Z. Guo, M. Peng, P. Zhu, J. He, Comput. Mater. Sci. 51, 112 (2012) |
[40] | J. Wang, Y. Li, R. Xu, Surf. Sci. 691, 121487 (2020) |
[41] | Y. Imai, M. Mukaida, T. Tsunoda, Thin Solid Films 381,176 (2001) |
[42] | V. Fiorentini, M. Methfessel, J. Phys. Condens. Matter 8, 6525 (1996) |
[43] | R. Besson, S. Macaluso, L. Thuinet, Surf. Interfaces 33, 102272 (2022) |
[44] | A.E. Steinman, S. Corthay, K.L. Firestein, D.G. Kvashnin, A.M. Kovalskii, A.T. Matveev, D.V. Shtansky, Mater. Des. 141, 88 (2018) |
[45] | Y.F. Han, Y.B. Dai, J. Wang, D. Shu, B.D. Sun, Appl. Surf. Sci. 257, 7831 (2011) |
[46] | F.K. Schulte, Surf. Sci. 55, 427 (1976) |
[47] | I. Egry, J. Brillo, D. Holland-Moritz, Y. Plevachuk, Mat. Sci. Eng. A 495,14 (2008) |
[48] | X. Li, R. Yang, Phys. Rev. B 86, 054305 (2012) |
[49] | J.E. Raynolds, J.R. Smith, G.L. Zhao, D.J. Srolovitz, Phys. Rev. B 53, 13883 (1996) |
[50] | K. Chen, B. Mariusz, Surf. Coat. Technol. 203, 598 (2008) |
[51] | Z. Zhuo, H. Mao, H. Xu, Y. Fu, Appl. Surf. Sci. 456, 37 (2018) |
[1] | Zulai Li, Yingxing Zhang, Junlei Zhang, Xiang Chen, Suokun Chen, Lujian Cui, Shengjie Han. Microstructure Characteristics, Texture Evolution and Mechanical Properties of Al-Mg-Si-Mn-xCu Alloys via Extrusion and Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1501-1522. |
[2] | Xue Han, Dan Zhang, Song Zhang, Mohammed R. I. Abueida, Lili Tan, Xiaopeng Lu, Qiang Wang, Huanye Liu. Fatigue and Corrosion Fatigue Properties of Mg-Zn-Zr-Nd Alloys in Glucose-Containing Simulated Body Fluids [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1533-1550. |
[3] | Lingyu Zhao, Wei Zhu, Chao Zhang, Yunchang Xin, Changjian Yan, Yao Cheng, Zhaoyang Jin. Detwinning and Anneal-Hardening Behaviors of Pre-Twinned AZ31 Alloys under Cryogenic Loading [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1551-1563. |
[4] | Gang Zeng, Hong Liu, Jing-Peng Xiong, Jian-Long Li, Yong Liu. Enhanced Grain Refining Effect of Mg-Zr Master Alloy on Magnesium Alloys via a Synergistic Strategy Involving Heterogeneous Nucleation and Solute-Driven Growth Restriction [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1354-1366. |
[5] | Hang Zhang, Jiaying Zhao, Rongguang Li, Boshu Liu, Shanshan Li, Sha Sha, Yuehong Zhang, Man Xu, Yan Tang. Microstructure and Mechanical Property of Mg-13Gd-0.2Ni Alloy Processed by Extrusion and Aging [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1367-1376. |
[6] | Guanjiu Wu, Yichao Xie, Yuan Li, Qing Wang, Chenfeng Fan, Wenfeng Wang, Lu Zhang, Shumin Han. Effect of Y, Al Co-Doping on Hydrogen Storage Properties of La-Mg-Ni-Based Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1399-1410. |
[7] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[8] | Chunyu Yue, Bowen Zheng, Ming Su, Yuxiang Wang, Xiaojiao Zuo, Yinxiao Wang, Xiaoguang Yuan. Effect of Y and Ce Micro-alloying on Microstructure and Hot Tearing of As-Cast Al-Cu-Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 939-952. |
[9] | Xiaofeng Ding, Zehao Wu, Tong Li, Jianxun Chen, Yuanhua Shuang, Baosheng Liu. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 953-968. |
[10] | Lan Zhang, Dao-Kui Xu, Bao-Jie Wang, Cui-Lan Lu, Shuo Wang, Xiang-Bo Xu, Dong-Liang Wang, Xin Lv, En-Hou Han. Mechanical Behavior and Failure Mechanism of an As-Extruded Mg-11wt%Y Alloy at Elevated Temperature [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 969-981. |
[11] | Sen Wang, Hucheng Pan, Caixia Jiang, Zhihao Zeng, Zhen Pan, Weineng Tang, Chubin Yang, Yuping Ren, Gaowu Qin. Microstructure and Mechanical Property of the Large Cross-Sectioned Mg-Gd-Y-Zn-Zr Alloy Produced by Small Extrusion Ratio [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 999-1006. |
[12] | You Lv, Yupeng Zhang, Xi Liu, Zehua Dong, Xiaorong Zhou, Xinxin Zhang. Effect of Mn Addition and Heat Treatment on the Corrosion Behaviour of Mg-Ag-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 665-677. |
[13] | Hengrui Hu, Jiayu Qin, Yunpeng Zhu, Jinhui Wang, Xiaoqiang Li, Peipeng Jin. Hot Deformation Behavior and Microstructures Evolution of GNP-Reinforced Fine-Grained Mg Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 407-424. |
[14] | Chong Wang, Fuyuan Liu, Xuejian Wang, Enyu Guo, Zelong Du, Kunkun Deng, Zongning Chen, Huijun Kang, Guohao Du, Tongmin Wang. Tailoring the Microstructure and Mechanical Property of Mg-Zn Matrix Composite via the Addition of Al Element [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 438-452. |
[15] | Jing-Peng Xiong, Yi-Qi Zeng, Jin-Long Liu, Wei-Cheng Wang, Lan Luo, Yong Liu. Interface Design Strategy for GNS/AZ91 Composites with Semi-Coherent Structure [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 467-483. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||