Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (5): 808-824.DOI: 10.1007/s40195-024-01672-6
Previous Articles Next Articles
Hulin Tang1, Xiang Zhang1, Chenping Zhang2, Tian Zhou2, Shiyue Guo3, Gaopeng Xu1, Rusheng Zhao4, Boyoung Hur5, Xuezheng Yue1()
Received:
2023-10-19
Revised:
2023-12-03
Accepted:
2023-12-07
Online:
2024-05-10
Published:
2024-06-14
Contact:
Xuezheng Yue, usst-yzyz@usst.edu.cn
Hulin Tang, Xiang Zhang, Chenping Zhang, Tian Zhou, Shiyue Guo, Gaopeng Xu, Rusheng Zhao, Boyoung Hur, Xuezheng Yue. Designing High-Porosity Porous Structures with Complex Geometries for Enhanced Thermal Conductivity Using Selective Laser Melting and Heat Treatment[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 808-824.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Logical process of structural design: a-1 pomelo; a-2 microstructure of pomelo peel [26] (the link to the Creative Commons license: http://creativecommons.org/licenses/by/4.0/), b lattice structure of D_L, K_L and their single-cell structures, c gradient arrangement type, lattice structure of D_K_L and single-cell structure
Structures | Porosity (%) | Volume of the structure (mm3) | Surface area (mm2) |
---|---|---|---|
D_L | 80.23 | 5337.7 | 16,540.33 |
84.96 | 4058.93 | 15,012.95 | |
90.42 | 2585.33 | 12,432.48 | |
K_L | 79.91 | 5423.15 | 16,366.48 |
84.65 | 4144.94 | 14,879.46 | |
89.89 | 2730.07 | 12,649.65 | |
D_K_L | 79.71 | 5478.67 | 16,746.01 |
84.52 | 4179.04 | 15,212.55 | |
89.94 | 2715.60 | 12,901.49 |
Table 1 Specific geometric parameters of the lattice porous structure
Structures | Porosity (%) | Volume of the structure (mm3) | Surface area (mm2) |
---|---|---|---|
D_L | 80.23 | 5337.7 | 16,540.33 |
84.96 | 4058.93 | 15,012.95 | |
90.42 | 2585.33 | 12,432.48 | |
K_L | 79.91 | 5423.15 | 16,366.48 |
84.65 | 4144.94 | 14,879.46 | |
89.89 | 2730.07 | 12,649.65 | |
D_K_L | 79.71 | 5478.67 | 16,746.01 |
84.52 | 4179.04 | 15,212.55 | |
89.94 | 2715.60 | 12,901.49 |
Al | Si | Mg | Fe | Cu | Mn | Ti | O |
---|---|---|---|---|---|---|---|
Bal. | 10.20 | 0.29 | 0.039 | < 0.01 | < 0.01 | < 0.01 | 0.049 |
Table 2 Chemical composition of the AlSi10Mg powder (wt%)
Al | Si | Mg | Fe | Cu | Mn | Ti | O |
---|---|---|---|---|---|---|---|
Bal. | 10.20 | 0.29 | 0.039 | < 0.01 | < 0.01 | < 0.01 | 0.049 |
Laser power (W) | Scan speed (mm/s) | Scan spacing (mm) | Layer thickness (μm) | Scanning angle (°) |
---|---|---|---|---|
350 | 1300 | 0.13 | 30 | 67 |
Table 3 Process parameters used to manufacture AlSi10Mg samples on the EOSINT M280 machine
Laser power (W) | Scan speed (mm/s) | Scan spacing (mm) | Layer thickness (μm) | Scanning angle (°) |
---|---|---|---|---|
350 | 1300 | 0.13 | 30 | 67 |
Fig. 5 a Schematic of the apparatus used to measure the thermal conductivity of SLM AlSi10Mg lattice structures, b close view of the test stack with the position of the temperature measurements
Fig. 6 a Comparison of theoretical porosity and actual porosity of samples, b unmelted powder on sample connecting rod by SEM, c irregular holes in additively manufactured samples, d samples of three structures with different porosities fabricated by SLM method
Fig. 7 a-c SEM images showing the micrographs of polished as-built samples after etching; d-f micrographs of SLM AlSi10Mg samples after heat treatment. Si-rich areas are projecting parts, and Al-rich areas are base bodies
Fig. 8 XRD pattern: a as-built and heat-treated, b it is a localized plot of 2θ equal to between 60° and 90°, EDX mapping for samples: c as-built, d heat-treated
Samples | t50 (ms) | α | K(T) (W·m−1·K−1) |
---|---|---|---|
As-built | 7.519 | 47.260 | 116.649 |
Heat-treated | 5.197 | 68.368 | 169.786 |
Table 4 Data of volumetric thermal conductivity
Samples | t50 (ms) | α | K(T) (W·m−1·K−1) |
---|---|---|---|
As-built | 7.519 | 47.260 | 116.649 |
Heat-treated | 5.197 | 68.368 | 169.786 |
Fig. 9 a-c Steady-state thermal simulation for three structures with 85% porosity, D_L, K_L and D_K_L, respectively, d the steady-state temperature distribution at different faces of the three structures, e simulated thermal conductivity of the as-built samples, f simulated thermal conductivity of the heat-treated samples
Fig. 10 a Temperature data of six test points on D_K_L samples with 90% porosity, b measured thermal conductivity of the as-built samples, c measured thermal conductivity of the heat-treated samples, d deviation value (W) of measured thermal conductivity from simulated thermal conductivity values for as-built and heat-treated samples (D_L D_K_L and K_L represent the three structures of as-built, and (D_L)' (D_K_L)' and (K_L)' represent the three structures of heat-treated)
Fig. 12 a Heat flow density distribution of single cells: K_L structure, D_K_L structure and D_L structure, b analysis of the degree of tilt of single-cell structural rods, c thermal resistance model of porous materials: (1) vertical direction, (2) horizontal direction
Fig. 14 Comparison the thermal conductivity improvement rate of heat-treated AlSi10Mg in the present study with the rate of increase in previously reported studies
[1] | Y.M. Xiao, Y.Q. Yang, S.B. Wu, J. Chen, D. Wang, C.H. Song, Acta Metall. Sin.-Engl. Lett. 35, 486 (2022) |
[2] | L.E. Murr, J. Mater. Sci. Technol. 32, 987 (2016) |
[3] | X.J. Wang, S.Q. Xu, S.W. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie,Biomaterials 83, 127 (2016) |
[4] | B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M. Leary, F. Berto, A. du Plessis, Mater. Des. 209, 110008 (2021) |
[5] | G. Allevi, M. Cibeca, R. Fioretti, R. Marsili, R. Montanini, G. Rossi,Measurement 126, 252 (2018) |
[6] | L. Berrocal, R. Fernández, S. González, A. Periñán, S. Tudela, J. Vilanova, L. Rubio, J.M.M. Márquez, J. Guerrero, F. Lasagni, Prog. Addit. Manuf. 4, 83 (2019) |
[7] | X.J. Nie, Z. Chen, Y. Qi, H. Zhang, H.H. Zhu, Acta Metall. Sin.-Engl. Lett. 36, 1454 (2023) |
[8] | T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, M. Brandt, Mater. Des. 183, 108137 (2019) |
[9] | A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, H.N.G. Wadley, Prog. Mater. Sci. 46, 309 (2001) |
[10] | M.G. Rashed, M. Ashraf, R. Mines, P.J. Hazell, Mater. Des. 95, 518 (2016) |
[11] | M.R. Karamooz Ravari, M. Kadkhodaei, M. Badrossamay, R. Rezaei, Int. J. Mech. Sci. 88, 154 (2014) |
[12] | K.J. Lin, K.M. Hu, D.D. Gu, Opt. Laser Technol. 115, 9 (2019) |
[13] |
C. Dawson, J.F.V. Vincent, G. Jeronimidis, G. Rice, P. Forshaw, J. Theor. Biol. 199, 291 (1999)
PMID |
[14] | F.M. Scott,Nature 210, 1015 (1966) |
[15] | M. Thielen, C.N. Schmitt, S. Eckert, T. Speck, R. Seidel, Bioinspir. Biomim. 8, 025001 (2013) |
[16] | A. Bührig-Polaczek, C. Fleck, T. Speck, P. Schüler, S.F. Fischer, M. Caliaro, M. Thielen, Bioinspir. Biomim. 11, 045002 (2016) |
[17] | L.C. Long, Z.K. Wang, K. Chen, J. Wood Sci. 61, 569 (2015) |
[18] | H. Zhao, Y. Han, C. Pan, D. Yang, H. Wang, T. Wang, X. Zeng, P. Su, Micromachines. 12 (2021) |
[19] | S.J. Yue, Z.G. Xu, Int. Commun. Heat Mass Transf. 142, 106640 (2023) |
[20] | F. Muzaki, J. Limanza, G.N. Surname, Numerical simulation and analysis of functionally graded materials and it’s potentials for battery application: a review. In:Paper presented at the 3rd international Symposium on Material and Electrical Engineering Conference (ISMEE), ( 2021), pp. 249-252 |
[21] | L. Zhao, L.B. Song, J.G. Santos Macías, Y.X. Zhu, M.S. Huang, A. Simar, Z.H. Li, Addit. Manuf. 56, 102914 (2022) |
[22] | N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi, Mater. Sci. Eng. A 704, 218 (2017) |
[23] | R.R.J. Sélo, S. Catchpole-Smith, I. Maskery, I.A. Ashcroft, C.J. Tuck, Addit. Manuf. 34, 101214 (2020) |
[24] | C. Butler, S. Babu, R. Lundy, R. O’Reilly Meehan, J. Punch, N. Jeffers, Mater. Charact. 173, 110945 (2021) |
[25] | Y.R. Liang, T.J. Ma, T.N. Jin, B. Zhang, L. Yang, W.H. Yin, H.G. Fu, Mater. Sci. Technol. 39, 1223 (2023) |
[26] | B.S. Yang, W.H. Chen, R.L. Xin, X.H. Zhou, D. Tan, C. Ding, Y. Wu, L. Yin, C.Y. Chen, S. Wang, Z.L. Yu, J.T. Pham, S. Liu, Y.F. Lei, L.J. Xue, J. Bionic Eng. 19, 448 (2022) |
[27] | D. Almonti, N. Ucciardello, Materials (2019) |
[28] | Y. Du, H.X. Liang, D.Q. Xie, N. Mao, J.F. Zhao, Z.J. Tian, C.J. Wang, L.D. Shen, Mater. Chem. Phys. 239, 121968 (2020) |
[29] |
H.J. Xu, Z.B. Xing, F.Q. Wang, Z.M. Cheng, Chem. Eng. Sci. 195, 462 (2019)
DOI |
[30] | B.O. Aduda, J. Mater. Sci. 31, 6441 (1996) |
[31] | M. Laleh, E. Sadeghi, R.I. Revilla, Q. Chao, N. Haghdadi, A.E. Hughes, W. Xu, I.D. Graeve, M. Qian, I. Gibson, M.Y. Tan 2023 Prog. Mater. Sci. 133 |
[32] | N.T. Aboulkhair, C. Tuck, I. Ashcroft, I. Maskery, N.M. Everitt, Metall. Mater. Trans. A 46, 3337 (2015) |
[33] | EOS GmbH-Electro Optical Systems,EOS Aluminium AlSi10Mg. (Germany, 2014) |
[34] | American Society for Testing and Materials,E1225-13. (United States, 2013) |
[35] | O. Al-Ketan, R. Rowshan, R.K. Abu Al-Rub, Addit. Manuf. 19, 167 (2018) |
[36] | H.X. Wang, X. Lin, N. Kang, Z.H. Qin, S.Q. Shi, J.C. Li, W.D. Huang, Acta Metall. Sin.-Engl. Lett. 35, 375 (2022) |
[37] | B. Liu, B.Q. Li, Z. Li, Results Phys. 12, 982 (2019) |
[38] | X.H. Gu, J.X. Zhang, X.L. Fan, L.C. Zhang, Acta Metall. Sin.-Engl. Lett. 33, 327 (2020) |
[39] |
T. Rubben, R.I. Revilla, I. De Graeve, Corros. Sci. 147, 406 (2019)
DOI |
[40] | M. Wang, B. Song, Q. Wei, Y. Zhang, Y. Shi, Mater. Sci. Eng. A 739, 463 (2019) |
[41] | J.J. Shea, I. E.E.E. Electr, Insul. Mag. 21, 56 (2005) |
[42] | A. Azizi, F. Hejripour, J.A. Goodman, P.A. Kulkarni, X. Chen, G. Zhou, S.N. Schiffres, Rapid. Prototyp. J 29, 1109 (2023) |
[43] | X. Zhang, M.H. Zhang, C.P. Zhang, T. Zhou, X. Wu, X.Z. Yue, Mater. (basel) 15, 8046 (2022) |
[1] | Hasfi F. Nurly, Jinhu Zhang, Dechun Ren, Yusheng Cai, Haibin Ji, Dongsheng Xu, Zhicheng Dong, Hao Wang, Qingmiao Hu, Jiafeng Lei, Rui Yang. Refinement of α′ Martensite by Oxygen in Selective Laser Melted Ti-6Al-4V [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 777-792. |
[2] | Pengwei Jiang, Gang Wang, Yaosha Wu, Zhigang Zheng, Zhaoguo Qiu, Tongchun Kuang, Jibo Huang, Dechang Zeng. Microstructure Evolution, Tribological and Corrosion Properties of Amorphous Alloy Strengthening Stainless Steel Fabricated by Selective Laser Melting in NaCl Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 825-839. |
[3] | Yiqi Zhou, Decheng Kong, Ruixue Li, Xing He, Chaofang Dong. Corrosion of Duplex Stainless Steel Manufactured by Laser Powder Bed Fusion: A Critical Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 587-606. |
[4] | You Lv, Yupeng Zhang, Xi Liu, Zehua Dong, Xiaorong Zhou, Xinxin Zhang. Effect of Mn Addition and Heat Treatment on the Corrosion Behaviour of Mg-Ag-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 665-677. |
[5] | Fanjing Meng, Wenbo Du, Ning Ding, Jian Sun, Xian Du, Ke Liu, Shubo Li. Synergistic Effects of Carbon Nanotube (CNT) and Reduced Graphene Oxide (RGO) on Mechanical and Thermal Properties of ZK61 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 577-585. |
[6] | Junyi Ma, Lin Yu, Qing Yang, Jie Liu, Lei Yang. High-Superelasticity NiTi Shape Memory Alloy by Directed Energy Deposition-Arc and Solution Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 132-144. |
[7] | Huan Yang, Ying Liu, Jianbo Jin, Kunmao Li, Junjie Yang, Lingjian Meng, Chunbo Li, Wencai Zhang, Shengfeng Zhou. Effect of Heat Treatment on Microstructure and Mechanical Behavior of Cu-Bearing 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 169-180. |
[8] | Sheng Cao, Hongyu Liu, Jin Jiang, Ke He, Binghua Lv, Hao Zhang, Lujie Zhang, Jingrong Meng, Hao Deng, Xiaodong Niu. Effect of Heat Treatment on Gradient Microstructure and Tensile Property of Laser Powder Bed Fusion Fabricated 15-5 Precipitation Hardening Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 181-195. |
[9] | Leilei Li, Kaikai Song, Qingwei Gao, Changshan Zhou, Xiaoming Liu, Yaocen Wang, Xiaojun Bai, Chongde Cao. Enhancing Strength-Ductility Synergy of CoCrNi-Based Medium-Entropy Alloy Through Coherent L12 Nanoprecipitates and Grain Boundary Precipitates [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 78-88. |
[10] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao. Unique Duplex Microstructure and Porosity Effect on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys Processed by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1465-1481. |
[11] | Kai Hu, Lei Zhang, Yuanjie Zhang, Bo Song, Shifeng Wen, Qi Liu, Yusheng Shi. Electrochemical Corrosion Behavior and Mechanical Response of Selective Laser Melted Porous Metallic Biomaterials [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1235-1246. |
[12] | Liqing Wang, Zhen Zhang, Zhanyong Zhao, Shenghua Zhang, Peikang Bai. Mixed Grain Structure and Mechanical Property of Ti-6Al-4V-0.5BN (wt%) Alloy Fabricated by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 917-925. |
[13] | Xiaolong Zhang, Yue Jiang, Shupeng Wang, Shuo Wang, Ziqiang Wang, Zhenglei Yu, Zhihui Zhang, Luquan Ren. Compression Behavior and Failure Mechanisms of Bionic Porous NiTi Structures Built via Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 926-936. |
[14] | Guohao Zhang, Zhiwei Hao, Meng Wang, Xufei Lu, Zhuang Zhao, Qian Wang, Xin Lin, Jing Chen, Weidong Huang. Globularization Mechanism and Near Isotropic Properties in Subcritical Heat-Treated Ti6Al4V Fabricated by Directed Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 937-948. |
[15] | Jinyang Liu, Jian Chen, Yang Lu, Xin Deng, Shanghua Wu, Zhongliang Lu. WC Grain Growth Behavior During Selective Laser Melting of WC-Co Cemented Carbides [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 949-961. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||