Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (5): 872-888.DOI: 10.1007/s40195-024-01660-w
Previous Articles Next Articles
Farhad Mohsenifar1,2, Hadi Ebrahimifar3(), Ahmad Irannejad1
Received:
2023-09-14
Revised:
2023-11-09
Accepted:
2023-11-25
Online:
2024-05-10
Published:
2024-06-14
Contact:
Hadi Ebrahimifar, H.ebrahimifar@kgut.ac.ir
Farhad Mohsenifar, Hadi Ebrahimifar, Ahmad Irannejad. Applying the Protective Mn-Co-La2O3 Coating on Crofer 22 APU Ferritic Stainless Steel Used as Solid Oxide Fuel Cell Interconnects[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 872-888.
Add to citation manager EndNote|Ris|BibTeX
C | Cr | Mn | Si | Ni | Al | Ti | La | Fe |
---|---|---|---|---|---|---|---|---|
0.01 | 22.7 | 0.38 | 0.02 | 0.02 | 0.02 | 0.07 | 0.06 | Bal |
Table 1 Chemical composition of Crofer 22 APU steel
C | Cr | Mn | Si | Ni | Al | Ti | La | Fe |
---|---|---|---|---|---|---|---|---|
0.01 | 22.7 | 0.38 | 0.02 | 0.02 | 0.02 | 0.07 | 0.06 | Bal |
Manganese sulfate, monohydrate (MnSO4∙H2O) | 84.5 g L−1 (0.5 M) |
---|---|
Cobalt sulphate, heptahydrate (CoSO4∙7H2O) | 28.11 g L−1 (0.1 M) |
Sodium gluconate (NaC6H11O7) | 152.7 g L−1 (0.7 M) |
Lanthanum oxide (La2O3) | 20 g L−1 |
Boric acid (H3BO3) | 61.84 g L−1 (1 M) |
Ammonium sulfate (NH4)2SO4 | 13.2 g L−1 (0.1 M) |
Current density | 250 mA cm−2 |
Temperature | 25 °C |
pH | 2 |
Time | 45 min |
Table 2 Chemical compositions and operating conditions for Mn-Co-La2O3 electrodeposition
Manganese sulfate, monohydrate (MnSO4∙H2O) | 84.5 g L−1 (0.5 M) |
---|---|
Cobalt sulphate, heptahydrate (CoSO4∙7H2O) | 28.11 g L−1 (0.1 M) |
Sodium gluconate (NaC6H11O7) | 152.7 g L−1 (0.7 M) |
Lanthanum oxide (La2O3) | 20 g L−1 |
Boric acid (H3BO3) | 61.84 g L−1 (1 M) |
Ammonium sulfate (NH4)2SO4 | 13.2 g L−1 (0.1 M) |
Current density | 250 mA cm−2 |
Temperature | 25 °C |
pH | 2 |
Time | 45 min |
Element | Line | Int | Error | K | Kr | W% | A% | ZAF* | Peak/background |
---|---|---|---|---|---|---|---|---|---|
O | Ka | 100.8 | 5.0219 | 0.0973 | 0.0900 | 13.58 | 37.23 | 0.6624 | 7.84 |
Mn | Ka | 71.8 | 0.5800 | 0.0995 | 0.0920 | 8.22 | 6.56 | 1.1203 | 7.30 |
Co | Ka | 366.4 | 0.5800 | 0.7597 | 0.7028 | 73.57 | 54.75 | 0.9553 | 35.25 |
La | La | 18.9 | 0.5800 | 0.0435 | 0.0402 | 4.63 | 1.46 | 0.8689 | 3.10 |
1.0000 | 0.9250 | 100.00 | 100.00 |
Table 3 Quantitative results of EDX analysis of Mn-Co-La2O3 coating
Element | Line | Int | Error | K | Kr | W% | A% | ZAF* | Peak/background |
---|---|---|---|---|---|---|---|---|---|
O | Ka | 100.8 | 5.0219 | 0.0973 | 0.0900 | 13.58 | 37.23 | 0.6624 | 7.84 |
Mn | Ka | 71.8 | 0.5800 | 0.0995 | 0.0920 | 8.22 | 6.56 | 1.1203 | 7.30 |
Co | Ka | 366.4 | 0.5800 | 0.7597 | 0.7028 | 73.57 | 54.75 | 0.9553 | 35.25 |
La | La | 18.9 | 0.5800 | 0.0435 | 0.0402 | 4.63 | 1.46 | 0.8689 | 3.10 |
1.0000 | 0.9250 | 100.00 | 100.00 |
Fig. 6 Oxidation kinetics of bare and Mn-Co-La2O3-coated steel in air for 500 h at 800 °C expressed as: a weight gain; b squared weight gain as a function of time during isothermal oxidation
Fig. 7 a, b FESEM surface morphology; c, d EDS analysis of uncoated Crofer 22 APU stainless steel at point 1 (c), point 2 (d) after 500 h of isothermal oxidation at 800 °C
Fig. 8 a, b FESEM surface morphology; c, d EDS analysis of Mn-Co-La2O3-coated Crofer 22 APU stainless steel at point 1 (c), point 2 (d) after 500 h of isothermal oxidation at 800 °C
Fig. 10 FESEM cross-section image and EDS line scan of: a, b uncoated; c, d Mn-Co-La2O3-coated specimens after 500 h of isothermal oxidation at 800 °C
Fig. 11 SEM images of: a, b uncoated; c, d Mn-Co-La2O3-coated samples after cyclic oxidation at 800 °C, and as well as e specific weight gain as a function of cycle number during cyclic oxidation
Material | α (× 10−6 °C−1) |
---|---|
Crofer 22 APU [ | 11.5 |
Cr2O3 [ | 9.6 |
MnCr2O4 [ | 7.2 |
FeCr2O4 [ | 8.5 |
Co3O4 [ | 9.3 |
MnCo2O4 [ | 9.7 |
La2O3 [ | 9.1 |
Table 4 Thermal expansion coefficients of the phases formed on samples specimens after 500 h of isothermal oxidation at 800 °C
Material | α (× 10−6 °C−1) |
---|---|
Crofer 22 APU [ | 11.5 |
Cr2O3 [ | 9.6 |
MnCr2O4 [ | 7.2 |
FeCr2O4 [ | 8.5 |
Co3O4 [ | 9.3 |
MnCo2O4 [ | 9.7 |
La2O3 [ | 9.1 |
[1] | A.G. Olabi, M.A. Abdelkareem, Renew. Sust. Energ. Rev. 158, 112111 (2022) |
[2] | S.Z. Golkhatmi, M.I. Asghar, P.D. Lund, Renew. Sust. Energ. Rev. 161, 112339 (2022) |
[3] | A. Ndubuisi, S. Abouali, K. Singh, V. Thangadurai, J. Mater. Chem. A 10, 2196 ( 2022) |
[4] | J.C. Mah, A. Muchtar, M.R. Somalu, M.J. Ghazali, Int. J. Hydrog.Energy 42, 9219 (2017) |
[5] | J. Peng, D. Zhao, Y. Xu, X. Wu, X. Li,Energies 16, 788 (2023) |
[6] | L. Zhou, J.H. Mason, W. Li, X. Liu, Renew. Sust. Energ. Rev. 134, 110320 (2020) |
[7] | V. Bongiorno, R. Spotorno, D. Paravidino, P. Piccardo,Metals 11, 405 (2021) |
[8] | C.M. Harrison, P.R. Slater, R. Steinberger-Wilckens, Solid State Ion. 354, 115410 (2020) |
[9] | J. Zhou, Q. Chen, J. Sang, R. Wu, Z. Li, W. Guan, Acta Metall. Sin. -Engl. Lett. 34, 668 (2021) |
[10] | Z. Yang, M. Guo, N. Wang, C. Ma, J. Wang, M. Han, Int. J. Hydrog.Energy 42, 24948 (2017) |
[11] | J.C. De Vero, K. Develos-Bagarinao, H. Kishimoto, T. Ishiyama, K. Yamaji, T. Horita, H. Yokokawa, J. Power.Sources 377, 128 (2018) |
[12] | S. Molin, A.G. Sabato, M. Bindi, P. Leone, G. Cempura, M. Salvo, S.C. Polo, A. Boccaccini, F. Smeacetto, J. Eur. Ceram. Soc. 37, 4781 (2017) |
[13] | X. Li, J. Shu, L. Chen, H. Bi, Acta Metall. Sin. -Engl. Lett. 27, 501 (2014) |
[14] | N. Shaigan, W. Qu, D.G. Ivey, W. Chen, J. Power.Sources 195, 1529 (2010) |
[15] | S. Sabzalian, M. Soltanieh, S. Rastegari, Int. J.Hydrogen Energy 48, 16406 (2023) |
[16] | K.H. Tan, H.A. Rahman, M.S. Azami, U.A. Yusop, N.A. Baharuddin, M.I. Nor Ma’arof, Ceram. Int. 48, 34258 (2022) |
[17] | S. Frangini, L. Della Seta, C. Paoletti,Energies 15, 632 (2022) |
[18] | M. Li, J. Xie, W. Gao, Z. Zhan, Z. Li, Surf. Coat. Technol. 444, 128655 (2022) |
[19] | F. Li, P. Zhang, Y. Zhao, D. Yang, J. Sun, Int. J. Hydrog.Energy 48, 16048 (2023) |
[20] |
M.R. Ardigo-besnard, I. Popa, S. Chevalier, Corros. Sci. 148, 251 (2019)
DOI |
[21] | A. Petric, H. Ling, J. Am. Ceram. Soc. 90, 1515 (2007) |
[22] | B. Talic, S. Molin, K. Wiik, P.V. Hendriksen, H.L. Lein, J. Power.Sources 372, 145 (2017) |
[23] | J. Mao, E. Wang, H. Wang, M. Ouyang, H. Hu, L. Lu, D. Ren, Y. Liu,Coatings 13, 1144 (2023) |
[24] | Y. Zhang, S. Wu, L. Chen, J. Liu, L. Jia, D. Yan, L. Jian, J. Electrochemic. Soc. 170, 024509 (2023) |
[25] | Z. Shen, J. Rong, X. Yu, Ceram. Int. 46, 5821 (2020) |
[26] | M.H. Shirani Bidabadi, T. Siripongsakul, T. Thublaor, P. Wiman, S. Chandra-ambhorn, Surf. Coat. Technol. 434, 128176 (2022) |
[27] | T. Thublaor, S. Chandra-ambhorn, Corros. Sci. 174, 108802 (2020) |
[28] | H. Ebrahimifar, M. Zandrahimi, Oxid. Met. 84, 129 (2015) |
[29] | S. Chandra-ambhorn, W. Homjabok, W. Chandra-ambhorn, T. Thublaor, T. Siripongsakul, Corros. Sci. 187, 109506 (2021) |
[30] | Y.Z. Hu, Y.T. Su, C.X. Li, C.J. Li, G.J. Yang, Appl. Surf. Sci. 499, 143726 (2020) |
[31] | C. Jia, Y. Yang, S. Molin, Y. Zhang, M. Chen, M. Han, J. Alloys Compd. 787, 1327 (2019) |
[32] | E. Dogdibegovic, S. Ibanez, A. Wallace, D. Kopechek, G. Arkenberg, S. Swartz, J.M. Funk, M. Reisert, M.A. Rahman, A. Aphale, P. Singh, H. Ding, W. Tang, M.V. Glazoff, D. Ding, T.L. Skafte, M.C. Tucker, Int. J. Hydrog.Energy 47, 24279 (2022) |
[33] | T. Brylewski, S. Molin, M. Marczyński, L. Mazur, K. Domaradzki, O. Kryshtal, A. Gil, Int. J. Hydrog.Energy 46, 6775 (2021) |
[34] | F. Saeidpour, R. Khaleghian-Moghadam, Oxid. Met. 97, 493 (2022) |
[35] | C. Goebel, R. Berger, C. Bernuy-Lopez, J. Westlinder, J.E. Svensson, J. Froitzheim, J. Power.Sources 449, 227480 (2020) |
[36] | Z.B. Ma, M.H. Wang, Y.S. Zhang, K. Li, M.G. Zhang, W. Yang,Vacuum 204, 111352 (2022) |
[37] | N. Hosseini, F. Karimzadeh, M. Abbasi, G. Choi, J. Alloys Compd. 673, 249 (2016) |
[38] | H.P. Tseng, T.Y. Yung, C.K. Liu, Y.N. Cheng, R.Y. Lee, Int. J. Hydrog.Energy 45, 12555 (2020) |
[39] | H. Zhu, S. Geng, J. Zhang, M. Chen, F. Wang,Ionics 28, 5525 (2022) |
[40] | J. Li, M. Zou, W. Chen, X. Hu, J. Zhou, X. Jiang,Thin Solid Films 768, 139692 (2023) |
[41] | J. Gong, G. Zangari, J. Electrochem. Soc.149, C209 (2002) |
[42] | W. Wei, W. Chen, D.G. Ivey, J. Power.Sources 186, 428 (2009) |
[43] | N. Guglielmi, J. Electrochem. Soc. 119, 1009 (1972) |
[44] | E. Lee, J. Choi, Surf. Coat. Technol. 148, 234 (2001) |
[45] | B.J. Hwang, C.S. Hwang, J. Electrochem. Soc. 140, 979 (1993) |
[46] | P. Vereecken, I. Shao, P. Searson, J. Electrochem. Soc. 147, 2572 (2000) |
[47] | M. Fernández-Barcia, V. Hoffmann, S. Oswald, L. Giebeler, U. Wolff, M. Uhlemann, A. Gebert, Surf. Coat. Technol. 334, 261 (2018) |
[48] | M.M. Kerrigan, J.P. Klesko, C.H. Winter, Chem. Mater. 29, 7458 (2017) |
[49] | W. Zhao, J. Jiang, Y. Luo, J. Li, Y. Ding,Coatings 13, 870 (2023) |
[50] | V. Barhate, K. Agrawal, V. Patil, S. Patil, A. Mahajan, Int. J. Mod. Phys.B 32, 1840074 (2018) |
[51] | P. Zhang, J. Guo, P. Zhao, B. Zhu, W. Huang, S. Zhang, RSC Adv. 5, 11989 (2015) |
[52] | F. Alahmadi, I.S. Khan, D. Poloneeva, G. Shterk, L.C. Garzon-Tovar, R. Schucker, A. Bavykina, J. Gascon, Ind. Eng. Chem. Res. 61, 15195 (2022) |
[53] | S. Becker, M. Baerns, J. Catal. 128, 512 (1991) |
[54] | M. Li, Y. Gao, K. Zhao, H. Li, F. He, P. Lv, Z. Huang, Fuel Process. Technol. 216, 106771 (2021) |
[55] | Y.F. He, M.L. Li, S.J. Liu, H.Y. Wei, H.Y. Ye, Y.M. Song, P. Qiu, Y.L. An, M.Z. Peng, X.H. Zheng, Acta Metall. Sin. -Engl. Lett. 34, 668 (2021) |
[56] | V. Bongiorno, P. Piccardo, S. Anelli, R. Spotorno, Acta Metall. Sin. -Engl. Lett. 32, 1530 (2019) |
[57] | S. Geng, Q. Zhao, Y. Li, J. Mu, G. Chen, F. Wang, S. Zhu, Int. J. Hydrog.Energy 42, 10298 (2017) |
[58] | S. Geng, S. Qi, D. Xiang, S. Zhu, F. Wang, J. Power.Sources 215, 274 (2012) |
[59] | H. Shahbaznejad, H. Ebrahimifar, J. Mater. Sci. Mater. Electron. 32, 7550 (2021) |
[60] | D. Koszelow, M. Makowska, F. Marone, J. Karczewski, P. Jasiński, S. Molin, Corros. Sci. 189, 109589 (2021) |
[61] | K. Przybylski, T. Brylewski, E. Durda, R. Gawel, A. Kruk, J. Therm. Anal. Calorim. 116, 825 (2014) |
[62] | Z. Sun, S. Gopalan, U.B. Pal, S.N. Basu, Surf. Coat. Technol. 323, 49 (2017) |
[63] | S. Molin, Int. J. Appl. Ceram. Technol. 15, 349 (2018) |
[64] | F. Saeidpour, M. Zandrahimi, H. Ebrahimifar, Int. J. Hydrog.Energy 44, 3157 (2019) |
[65] | F.H. Stott, F.I. Wei, C.A. Enahoro, Mater. Corros. 40, 198 (1989) |
[66] | T. Brylewski, J. Dabek, K. Przybylski, J. Therm. Anal. Calorim. 77, 207 (2004) |
[67] | T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski, Solid State Ion. 143, 131 (2001) |
[68] | M. Cox, B. McEnaney, V. Scott, Philos. Mag. 26, 839 (1972) |
[69] | A. Sabioni, A. Huntz, L. Borges, F. Jomard, Philos. Mag. 87, 1921 ( 2007) |
[70] | J. Gilewicz-Wolter, J. Dudała, Z. Żurek, M. Homa, J. Lis, M. Wolter, J. Phase Equilibria Diffus. 26, 561 (2005) |
[71] | H.T. Michels, Metall. Mater. Trans. A 7, 379 (1976) |
[72] | B. Pint, Oxid. Met. 45, 1 (1996) |
[73] | J.H. Zhu, M.J. Lewis, S.W. Du, Y.T. Li,Thin Solid Films 596, 179 (2015) |
[74] | S. Fontana, S. Chevalier, G. Caboche, Oxid. Met. 78, 307 (2012) |
[75] | B.K. Kim, D.I. Kim, K.W. Yi, Corros. Sci. 130, 45 (2018) |
[76] | W.M. Fr, D.H. Yoon, K. Raju, S. Kim, K.S. Song, J.H. Yu, Met. Mater. Int. 24, 157 (2018) |
[77] | G.V. Samsonov, The oxide handbook, 2nd edn. (Springer, New York, 2013), p. 126 |
[78] | W. Qu, L. Jian, J.M. Hill, D.G. Ivey, J. Power.Sources 153, 114 (2006) |
[79] | C.W. Parmelee, A.E. Badger, G.A. Ballam, A study of a group of typical spinels University of Illinois, Urbana, 1932), p.20 |
[80] | J. Muthusamy, G. Venkadesan, M.S. Panithasan, Int. J. Hydrog.Energy 47, 27199 (2022) |
[81] | S.N. Hosseini, F. Karimzadeh, M.H. Enayati, N.M. Sammes, Solid State Ion. 289, 95 (2016) |
[82] | A.M. Dayaghi, M. Askari, H. Rashtchi, P. Gannon, Surf. Coat. Technol. 223, 110 (2013) |
[83] | Y. Xu, Z. Wen, S. Wang, T. Wen, Solid State Ion. 192, 561 (2011) |
[84] | Y.T. Yu, J.H. Zhu, J. Electrochem. Soc.165, F297 (2018) |
[85] |
F. Saeidpour, M. Zandrahimi, H. Ebrahimifar, Corros. Sci. 153, 200 (2019)
DOI |
[86] | F. Saeidpour, H. Ebrahimifar, Corros. Sci. 182, 109280 (2021) |
[87] | F. Saeidpour, M. Zandrahimi, H. Ebrahimifar, Oxid. Met. 93, 87 (2020) |
[88] | P. Paknahad, M. Askari, M. Ghorbanzadeh, J. Power.Sources 266, 79 (2014) |
[89] | V.I. Gorokhovsky, P. Gannon, M. Deibert, R.J. Smith, A. Kayani, M. Kopczyk, D. VanVorous, Z. Yang, J.W. Stevenson, S. Visco, J. Electrochem. Soc.153, A1886 (2006) |
[90] | B. Gillot, F. Jemmali, Mater. Chem. Phys. 18, 139 (1987) |
[91] | C. Quan, S. Deng, Y. Jiang, C. Jiang, M. Shuai, J. Alloys Compd. 793, 170 (2019) |
[92] | N. Gavrilov, V. Ivanov, A. Kamenetskikh, A. Nikonov, Surf. Coat. Technol. 206, 1252 (2011) |
[93] | Y. Zhou, H. Hu, H. Zhang,Vacuum 86, 210 (2011) |
[94] | A. Strawbridge, P. Hou, Mater. High Temp. 12, 177 (1994) |
[95] | E. Lang, The role of active elements in the oxidation behaviour of high temperature metals and alloys (Elsevier, New York, 2012), pp. 14-15 |
[96] | Y. Zhou, J. Sun, S. Wang, H. Zhang, Corros. Sci. 63, 351 (2012) |
[1] | Wenting Wang, Jingjun Xu, Jun Zuo, Ke Ma, Yang Li, Guangqi He, Meishuan Li. Oxidation Resistance of In Situ Reaction/Hot Pressing Synthesized Ti2AlC-20% TiB2 Composite at 600-900 °C in Air [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 739-748. |
[2] | Chuan Rong, Jieren Yang, Xiaoliang Zhao, Ke Huang, Ying Liu, Xiaohong Wang, Dongdong Zhu, Ruirun Chen. Microstructure Recrystallization and Mechanical Properties of a Cold-Rolled TiNbZrTaHf Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 633-647. |
[3] | Ying Shen, Xianfeng Shan, Iniobong P. Etim, Muhammad Ali Siddiqui, Yang Yang, Zewen Shi, Xuping Su, Junxiu Chen. Comparative Study of the Effects of Nano ZnO and CuO on the Biodegradation, Biocompatibility, and Antibacterial Properties of Micro-arc Oxidation Coating of Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 242-254. |
[4] | Suya Ji, Bin Liang, Chenglong Hu, Shengyang Pang, Rida Zhao, Jian Li, Sufang Tang. Mechanical Properties and Oxidation Behaviors of Self-Healing SiCf/SiC-SiBCN Composites Exposed to H2O/O2/Na2SO4 Environments [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1909-1923. |
[5] | Mingyu Zhu, Yingwei Song, Kaihui Dong, Dayong Shan, En-Hou Han. Effect of Initial Oxide Film on the Formation and Performance of Plasma Electrolytic Oxidation Coating on 7075 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1559-1571. |
[6] | Hao-Jie Yan, Jun-Jie Xia, Lian-Kui Wu, Fa-He Cao. Hot Corrosion Behavior of Ti45Al8.5Nb Alloy: Effect of Anodization and Pre-oxidation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1531-1546. |
[7] | Xiaogang Li, Qu Liu, Shanlin Li, Yu Zhang, Zhipeng Cai, Kejian Li, Jiluan Pan. Oxidation Behaviors of Different Grades of Ferritic Heat Resistant Steels in High-Temperature Steam and Flue Gas Environments [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1103-1116. |
[8] | Yu Chen, Jian-chao Pang, Shou-xin Li, Zhe-feng Zhang. High-Temperature Oxidation Behavior and Related Mechanism of RuT400 Vermicular Graphite Iron [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1117-1130. |
[9] | Rabia Kara, Huseyin Zengin. Tribological and Electrochemical Corrosion Properties of CNT-Incorporated Plasma Electrolytic Oxidation (PEO) Coatings on AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1195-1206. |
[10] | You Lv, Chao Zhang, Yupeng Zhang, Qishi Wang, Xinxin Zhang, Zehua Dong. Microstructure and Corrosion Resistance of Plasma Electrolytic Oxidized Recycled Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 961-974. |
[11] | A. Ullah, A. Khan, Z.B. Bao, Y.F. Yang, M.M. Xu, S.L. Zhu, F.H. Wang. Temperature Effect on Early Oxidation Behavior of NiCoCrAlY Coatings: Microstructure and Phase Transformation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 975-984. |
[12] | Jinjin Yao, Shengyang Pang, Yuanhong Wang, Chenglong Hu, Rida Zhao, Jian Li, Sufang Tang, Hui-Ming Cheng. Effect of C/SiC Volume Ratios on Mechanical and Oxidation Behaviors of Cf/C-SiC Composites Fabricated by Chemical Vapor Infiltration Technique [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 801-811. |
[13] | K. J. Tan, J. J. Liang, X. G. Wang, X. P. Tao, J. Gong, C. Sun, Y. Z. Zhou, X. F. Sun. Oxidation Performance and Interdiffusion Behaviour of two MCrAlY Coatings on a Fourth-Generation Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 679-692. |
[14] | Shenghui Xie, Xiang Liao, Xierong Zeng, Haipeng Yang, Liang He. An Iron-Based High-Entropy Alloy with Highly Efficient Degradation for p-Nitrophenol [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1653-1664. |
[15] | Khalil Rehman, Naicheng Sheng, Shigang Fan, Shijie Sun, Guicheng Hou, Yizhou Zhou, Xiaofeng Sun. Improved Spallation Resistance of the Oxide Scale by Hf/Y Co-doping in Ni-Based Superalloy at High Temperature [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1744-1758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||