Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (5): 867-878.DOI: 10.1007/s40195-022-01377-8
Minmin Li1, Zhe Qin1, Yan Yang1,2,3(), Xiaoming Xiong1, Gang Zhou1, Xiaofei Cui1, Bin Jiang1,2, Xiaodong Peng1, Fusheng Pan1
Received:
2021-06-07
Revised:
2021-08-22
Accepted:
2021-08-31
Online:
2022-05-10
Published:
2022-02-02
Contact:
Yan Yang
About author:
Yan Yang, yanyang@cqu.edu.cnMinmin Li, Zhe Qin, Yan Yang, Xiaoming Xiong, Gang Zhou, Xiaofei Cui, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and Corrosion Properties of Duplex-Structured Extruded Mg-6Li-4Zn-xMn Alloys[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 867-878.
Add to citation manager EndNote|Ris|BibTeX
Sample | Designed composition | Actual composition |
---|---|---|
1 | Mg-6Li-4Zn | Mg-6.9Li-4Zn |
2 | Mg-6Li-4Zn-0.4Mn | Mg-6Li-3.8Zn-0.4Mn |
3 | Mg-6Li-4Zn-0.8Mn | Mg-5.9Li-3.7Zn-0.8Mn |
4 | Mg-6Li-4Zn-1.2Mn | Mg-5.7Li-3.3Zn-1.3Mn |
Table 1 Chemical composition of Mg-Li-Zn-xMn alloys
Sample | Designed composition | Actual composition |
---|---|---|
1 | Mg-6Li-4Zn | Mg-6.9Li-4Zn |
2 | Mg-6Li-4Zn-0.4Mn | Mg-6Li-3.8Zn-0.4Mn |
3 | Mg-6Li-4Zn-0.8Mn | Mg-5.9Li-3.7Zn-0.8Mn |
4 | Mg-6Li-4Zn-1.2Mn | Mg-5.7Li-3.3Zn-1.3Mn |
Position | Alloy elements (wt%) | ||
---|---|---|---|
Mg | Zn | Mn | |
A | 70 | 30 | 0 |
B | 70.2 | 29.7 | 0.1 |
C | 30.6 | 1.6 | 67.8 |
D | 35.9 | 63.1 | 1 |
E | 65.8 | 33.9 | 0.3 |
F | 54.1 | 44.8 | 1.1 |
G | 11.4 | 1.4 | 87.2 |
H | 54.3 | 45 | 0.7 |
Table 2 EDS results of as-extruded Mg-6Li-4Zn-xMn alloys at different positions
Position | Alloy elements (wt%) | ||
---|---|---|---|
Mg | Zn | Mn | |
A | 70 | 30 | 0 |
B | 70.2 | 29.7 | 0.1 |
C | 30.6 | 1.6 | 67.8 |
D | 35.9 | 63.1 | 1 |
E | 65.8 | 33.9 | 0.3 |
F | 54.1 | 44.8 | 1.1 |
G | 11.4 | 1.4 | 87.2 |
H | 54.3 | 45 | 0.7 |
Fig. 5 a Bright-field TEM image of as-extruded Mg-6Li-4Zn-1.2Mn alloy with EDS of points A and B; b partial enlargement of image (a); c high-resolution TEM image of Mn precipitates
Alloys | RS (Ω) | R (Ω cm2) | CPE1 (10-6 sn Ω -1 cm -2) | n | Rf (Ω cm2) | Cd1 (μF cm -2) | RL | L |
---|---|---|---|---|---|---|---|---|
A | 17.27 | 129.9 | 14.19 | 0.93 | 543.2 | 2247.1 | - | - |
B | 15.23 | 95 | 13.22 | 0.93 | 436.2 | 2761.9 | - | - |
C | 16.81 | - | 25.89 | 0.88 | 382 | - | - | - |
D | 18.35 | - | 12.31 | 0.91 | 792.1 | 0.00649 | 4324 | 1862 |
Table 3 Fitted results of the EIS tests of the experimental alloys using equivalent circuits (a) Mg-6Li-4Zn, (b) Mg-6Li-4Zn-0.4Mn; (c) Mg-6Li-4Zn-0.8Mn; (d) Mg-6Li-4Zn-1.2Mn
Alloys | RS (Ω) | R (Ω cm2) | CPE1 (10-6 sn Ω -1 cm -2) | n | Rf (Ω cm2) | Cd1 (μF cm -2) | RL | L |
---|---|---|---|---|---|---|---|---|
A | 17.27 | 129.9 | 14.19 | 0.93 | 543.2 | 2247.1 | - | - |
B | 15.23 | 95 | 13.22 | 0.93 | 436.2 | 2761.9 | - | - |
C | 16.81 | - | 25.89 | 0.88 | 382 | - | - | - |
D | 18.35 | - | 12.31 | 0.91 | 792.1 | 0.00649 | 4324 | 1862 |
Alloys | Ecorr (V/SCE) | βc (mV/dec) | icorr (μA/cm2) |
---|---|---|---|
Mg-6Li-4Zn | -1.5087 | -180.5 | 47.3 |
Mg-6Li-4Zn-0.4Mn | -1.5072 | -179.5 | 63.1 |
Mg-6Li-4Zn-0.8Mn | -1.5330 | -230.8 | 79.4 |
Mg-6Li-4Zn-1.2Mn | -1.4436 | -310.3 | 25.1 |
Table 4 Corrosion potential (Ecorr), cathodic slope (βc) and corrosion current density (icorr) of samples obtained from potentiodynamic polarization test
Alloys | Ecorr (V/SCE) | βc (mV/dec) | icorr (μA/cm2) |
---|---|---|---|
Mg-6Li-4Zn | -1.5087 | -180.5 | 47.3 |
Mg-6Li-4Zn-0.4Mn | -1.5072 | -179.5 | 63.1 |
Mg-6Li-4Zn-0.8Mn | -1.5330 | -230.8 | 79.4 |
Mg-6Li-4Zn-1.2Mn | -1.4436 | -310.3 | 25.1 |
Position | Alloy elements (wt%) | ||
---|---|---|---|
Mg | Zn | Mn | |
A | 90.5 | 9.5 | 0 |
B | 66.4 | 33.6 | 0 |
C | 63.4 | 35.4 | 1.2 |
D | 65.6 | 33.8 | 0.6 |
Table 5 EDS analysis results at different positions
Position | Alloy elements (wt%) | ||
---|---|---|---|
Mg | Zn | Mn | |
A | 90.5 | 9.5 | 0 |
B | 66.4 | 33.6 | 0 |
C | 63.4 | 35.4 | 1.2 |
D | 65.6 | 33.8 | 0.6 |
Position | Alloy elements (at.%) | |||
---|---|---|---|---|
Mg | O | Zn | Mn | |
A | 71 | 27.9 | 1.1 | 0 |
B | 36.8 | 63 | 0.2 | 0 |
C | 34.7 | 65.2 | 0.1 | 0 |
D | 75.8 | 15.8 | 7.8 | 0.6 |
E | 40.8 | 58.8 | 0.4 | 0 |
F | 78.2 | 20.3 | 1.1 | 0.4 |
Table 6 EDS analysis results at different positions as shown in Fig. 12
Position | Alloy elements (at.%) | |||
---|---|---|---|---|
Mg | O | Zn | Mn | |
A | 71 | 27.9 | 1.1 | 0 |
B | 36.8 | 63 | 0.2 | 0 |
C | 34.7 | 65.2 | 0.1 | 0 |
D | 75.8 | 15.8 | 7.8 | 0.6 |
E | 40.8 | 58.8 | 0.4 | 0 |
F | 78.2 | 20.3 | 1.1 | 0.4 |
[1] | Y. Shao, R. Zeng, S. Li, L. Cui, Y. Zou, S. Guan, Y. Zheng, Acta Metall. Sin. -Engl. Lett. 33, 615 (2020) |
[2] | R. Zeng, L. Cui, W. Ke, Acta Metall. Sin. 54, 1215 (2018) |
[3] | I.P. Etim, W. Zhang, Y. Zhang, L. Tan, K. Yang, Acta Metall. Sin. -Engl. Lett. 34, 834 (2021) |
[4] | H. Niu, F. Cao, K. Deng, K. Nie, J. Kang, H. Wang, Acta Metall. Sin. -Engl. Lett. 33, 362 (2020) |
[5] | R. Islam, M. Haghshenas, J. Magnes. Alloy. 7, 203 (2019) |
[6] | Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, J. Magnes. Alloy. 9, 705 (2021) |
[7] | C. Li, Y. He, H. Huang, J. Magnes, Alloy 9, 569 (2021) |
[8] | B.J. Wang, D.K. Xu, X. Cai, Y.X. Qiao, L.Y. Sheng, J. Magnes. Alloy. 9, 560 (2021) |
[9] |
X. Peng, X. Shihao, D. Ding, G. Liao, G. Wu, W. Liu, W. Ding, J. Mater. Sci. Technol. 72, 16 (2021)
DOI URL |
[10] |
Z. Ding, L. Cui, R. Zeng, Y. Zhao, S. Guan, D. Xu, C. Lin, J. Mater. Sci. Technol. 34, 1550 (2018)
DOI URL |
[11] |
Z. Zhen, T. Xi, Y. Zheng, L. Li, L. Li, J. Mater. Sci. Technol. 30, 675 (2014)
DOI |
[12] | W. Jiang, J. Wang, W. Zhao, Q. Liu, D. Jiang, S. Guo, J. Magnes. Alloy. 7, 15 (2019) |
[13] | N.D. Nam, J. Magnes. Alloy. 2, 190 (2014) |
[14] |
N. Birbilis, Corrosion 75, 1016 (2019)
DOI |
[15] | D. Gu, J. Peng, J. Wang, Z. Liu, F. Pan, Acta Metall. Sin. -Engl. Lett. 34, 1 (2021) |
[16] | L. Xu, G. Yu, E. Zhang, F. Pan, K. Yang J. Biomed. Mater. Res. A 83, 703 (2007) |
[17] |
A. Bahmani, S. Arthanari, K.S. Shin, J. Magnes. Alloy. 7, 38 (2019)
DOI |
[18] | W. Du, K. Liu, K. Ma, Z. Wang, S. Li, J. Magnes. Alloy. 6, 1 (2018) |
[19] |
H. Feng, S. Liu, Y. Du, T. Lei, R. Zeng, T. Yuan, J. Alloy. Compd. 695, 2330 (2017)
DOI URL |
[20] |
P. Zhou, L. Yang, Y. Hou, G. Duan, B. Yu, X. Li, Y. Zhai, B. Zhang, T. Zhang, F. Wang, Corros. Commun. 1, 47 (2021)
DOI URL |
[21] |
X. Wu, C. Xu, J. Kuan, Z. Zhang, J. Zhang, W. Yang, Materials 13, 1147 (2020)
DOI URL |
[22] | B. Du, Z. Hu, J. Wang, L. Sheng, H. Zhao, Y. Zheng, T. Xi, Bioact. Mater. 5, 219 (2020) |
[23] |
L. Zhang, K. Deng, K. Nie, F. Xu, K. Su, W. Liang, Mater. Sci. Eng. A 636, 279 (2015)
DOI URL |
[24] |
Z. Zhang, H. Xu, Q. Wang, Trans. Nonferrous Met. Soc. China 18, S140 (2008)
DOI URL |
[25] | J. Wei, B. Li, L. Jing, N. Tian, X. Zhao, J. Zhang, Chem. Eng. J. 390, 124562 (2020) |
[26] |
J. Li, Y. Yang, H. Deng, M. Li, J. Su, F. Hu, X. Xiong, X. Peng, J. Alloy. Compd. 823, 153839 (2020)
DOI URL |
[27] |
J. Liao, M. Hotta, Y. Mori, Mater. Sci. Eng. A 544, 10 (2012)
DOI URL |
[28] |
P. Wu, F. Xu, K. Deng, F. Han, Z. Zhang, R. Gao, Corros. Sci. 127, 280 (2017)
DOI URL |
[29] |
L. Zhong, J. Peng, Y. Sun, Y. Wang, Y. Lu, F. Pan, Mater. Sci. Technol. 33, 92 (2017)
DOI URL |
[30] |
Y. Liu, Y. Wu, D. Bian, S. Gao, S. Leeflang, H. Guo, Y. Zheng, J. Zhou, Acta Biomater. 62, 418 (2017)
DOI URL |
[31] |
D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, Scr. Mater. 57, 285 (2007)
DOI URL |
[32] |
A. Yamamoto, T. Ashida, Y. Kouta, K.B. Kim, S. Fukumoto, H. Tsubakino, Mater. Trans. 44, 619 (2003)
DOI URL |
[33] | H. Okamoto, Mg-Mn (Magnesium-Manganese). J. Phase Equilib. Diffus. 29, 208 (2008) |
[34] |
Q. Cui, D. Yi, H. Wang, J. Zhang, J. Xu, B. Wang, J. Rare Earths 37, 1341 (2019)
DOI URL |
[35] |
J. Li, Q. Jiang, H. Sun, Y. Li, Corros. Sci. 111, 288 (2016)
DOI URL |
[36] |
M. Liu, P. Schmutz, P.J. Uggowitzer, G. Song, A. Atrens, Corros. Sci. 52, 3687 (2010)
DOI URL |
[37] |
G. Song, A. Atrens, Adv. Eng. Mater. 5, 837 (2003)
DOI URL |
[38] |
N.N. Aung, W. Zhou, Corros. Sci. 52, 589 (2010)
DOI URL |
[39] |
Y. Song, D. Shan, R. Chen, E. Han, Corros. Sci. 51, 1087 (2009)
DOI URL |
[40] |
H. Wang, Y. Song, J. Yu, D. Shan, H. Han, J. Electrochem. Soc. 164, C574 (2017)
DOI URL |
[41] |
S. Jian, Y. Chu, C. Lin, Corros. Sci. 93, 301 (2015)
DOI URL |
[42] |
F. Cao, Z. Shi, G. Song, M. Liu, M.S. Dargusch, A. Atrens, Corros. Sci. 90, 176 (2015)
DOI URL |
[43] |
P. Metalnikov, G. Ben-Hamu, Y. Templeman, K.S. Shin, L. Meshi, Mater. Charact. 145, 101 (2018)
DOI URL |
[44] |
P. Saha, M. Roy, M.K. Datta, B. Lee, P.N. Kumta, Mater. Sci. Eng. C-Mater. Biol. Appl. 57, 294 (2015)
DOI URL |
[45] |
R. Shishir, S.A. Rahim, T. Hanas, Mater. Res. Express 7, 36501 (2020)
DOI URL |
[46] |
G.R. Argade, S.K. Panigrahi, R.S. Mishra, Corros. Sci. 58, 145 (2012)
DOI URL |
[47] |
S. Yin, W. Duan, W. Liu, L. Wu, J. Yu, Z. Zhao, M. Liu, P. Wang, J. Cui, Z. Zhang, Corros. Sci. 166, 108419 (2020)
DOI URL |
[48] |
A. Dobkowska, B. Adamczyk-Cieślak, A. Towarek, P. Maj, E. Ura-Bińczyk, M. Momeni, D. Kuc, E. Hadasik, J. Mater. Eng. Perform. 29, 2679 (2020)
DOI URL |
[49] |
Y.Y. Han, C. You, Y. Zhao, M.F. Chen, L. Wang, Front. Mater. 6, 324 (2019)
DOI URL |
[50] |
L.N. Ma, Y. Yang, G. Zhou, F.J. Ren, H.J. Deng, G.B. Wei, X.D. Peng, Trans. Nonferrous Met. Soc. China 30, 1816 (2020)
DOI URL |
[1] | Junlei Zhang, Han Liu, Xiang Chen, Qin Zou, Guangsheng Huang, Bin Jiang, Aitao Tang, Fusheng Pan. Deformation Characterization, Twinning Behavior and Mechanical Properties of Dissimilar Friction-Stir-Welded AM60/AZ31 Alloys Joint During the Three-Point Bending [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 727-744. |
[2] | Xicai Luo, Haolin Liu, Limei Kang, Jielin Lin, Datong Zhang, Dongyang Li, Daolun Chen. Achieving Superior Superplasticity in a Mg-6Al-Zn Plate via Multi-pass Submerged Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 757-762. |
[3] | Peng Gong, Ying-Ying Zuo, Shu-De Ji, De-Jun Yan, Deng-Chang Li, Zhen Shang. Non-keyhole Friction Stir Welding for 6061-T6 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 763-772. |
[4] | Yu-Qing Mao, Ping Yang, Li-Ming Ke, Yang Xu, Yu-Hua Chen. Microstructure Evolution and Recrystallization Behavior of Friction Stir Welded Thick Al-Mg-Zn-Cu alloys: Influence of Pin Centerline Deviation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 745-756. |
[5] | Zhengran Liu, Xi Zhao, Kai Chen, Siqi Wang, Xianwei Ren, Zhimin Zhang, Yong Xue. Microstructural Evolution and Anisotropic Weakening Mechanism of ZK60 Magnesium Alloy Processed by Isothermal Repetitive Upsetting Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 839-852. |
[6] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
[7] | Zohreh Yazdani, Mohammad Reza Toroghinejad, Hossein Edris. Effects of Annealing on the Fabrication of Al-TiAl3 Nanocomposites Before and After Accumulative Roll Bonding and Evaluation of Strengthening Mechanisms [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 636-650. |
[8] | Zijian Yu, Xi Xu, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Xiuzhu Han, Tao Xiao, Wenbo Du. Precipitate Characteristics and Mechanical Performance of Cast Mg-6RE-1Zn-xCa-0.3Zr (x = 0 and 0.4 wt%) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 596-608. |
[9] | Sujie Zhang, Xiaohua Min, Yada Li, Weiqiang Wang, Ping Li, Mingjia Li. Effects of Deformation and Phase Transformation Microstructures on Springback Behavior and Biocompatibility in β-Type Ti-15Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 621-635. |
[10] | H. R. Rezaei Ashtiani, A. A. Shayanpoor. Effect of Initial Grain Size on the Hot Deformation Behavior and Microstructural Evolution of Pure Copper [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 662-678. |
[11] | Yueling Guo, Qifei Han, Jinlong Hu, Xinghai Yang, Pengcheng Mao, Junsheng Wang, Shaobo Sun, Zhi He, Jiping Lu, Changmeng Liu. Comparative Study on Wire-Arc Additive Manufacturing and Conventional Casting of Al-Si Alloys: Porosity, Microstructure and Mechanical Property [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 475-485. |
[12] | Minbo Wang, Ruidi Li, Tiechui Yuan, Haiou Yang, Pengda Niu, Chao Chen. Microstructure and Mechanical Properties of Selective Laser Melted Al-2.51Mn-2.71Mg-0.55Sc-0.29Cu-0.31Zn Alloy Designed by Supersaturated Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 354-368. |
[13] | Pei Wang, Sijie Yu, Jaskarn Shergill, Anil Chaubey, Jürgen Eckert, Konda Gokuldoss Prashanth, Sergio Scudino. Selective Laser Melting of Al-7Si-0.5 Mg-0.5Cu: Effect of Heat Treatment on Microstructure Evolution, Mechanical Properties and Wear Resistance [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 389-396. |
[14] | Rong Xu, Ruidi Li, Tiechui Yuan, Hongbin Zhu, Ping Li. Microstructure and Mechanical Properties of TiC-Reinforced Al-Mg-Sc-Zr Composites Additively Manufactured by Laser Direct Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 411-424. |
[15] | Li Hu, Mingao Li, Qiang Chen, Tao Zhou, Laixin Shi, Mingbo Yang. Dependence of Microstructure Evolution and Mechanical Properties on Loading Direction for AZ31 Magnesium Alloy Sheet with Non-basal Texture During In-Plane Uniaxial Tension [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 223-234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||