Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (8): 1343-1356.DOI: 10.1007/s40195-021-01366-3
Previous Articles Next Articles
G. C. Chu1,2, F. Z. Jin3, X. J. Jin4, Y. Zhang5, Q. Wang1(), J. P. Hou1, Z. F. Zhang1,2(
)
Received:
2021-07-16
Revised:
2021-09-15
Accepted:
2021-10-08
Online:
2022-02-03
Published:
2022-02-03
Contact:
Q. Wang,Z. F. Zhang
About author:
Z. F. Zhang zhfzhang@imr.ac.cnG. C. Chu, F. Z. Jin, X. J. Jin, Y. Zhang, Q. Wang, J. P. Hou, Z. F. Zhang. Fatigue Properties Improvement of Low-Carbon Alloy Axle Steel by Induction Hardening and Shot Peening: A Prospective Comparison[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1343-1356.
Add to citation manager EndNote|Ris|BibTeX
C | Si | Mn | P | S | Cr | Ni | Mo | Nb | V |
---|---|---|---|---|---|---|---|---|---|
0.23 | 0.25 | 0.75 | ≤ 0.010 | ≤ 0.005 | 1.25 | 1.10 | 0.35 | 0.025 | 0.040 |
Table 1 Chemical compositions of the modified low-carbon alloy steel (wt%)
C | Si | Mn | P | S | Cr | Ni | Mo | Nb | V |
---|---|---|---|---|---|---|---|---|---|
0.23 | 0.25 | 0.75 | ≤ 0.010 | ≤ 0.005 | 1.25 | 1.10 | 0.35 | 0.025 | 0.040 |
Frequency (kHz) | Power (kW) | Heating time (s) | Cooling medium |
---|---|---|---|
250 | 50 | 15 | Water |
Table 2 Induction hardening parameters
Frequency (kHz) | Power (kW) | Heating time (s) | Cooling medium |
---|---|---|---|
250 | 50 | 15 | Water |
Shot size (mm) | Intensity (mmA) | Air pressure (MPa) | Time (s) | Coverage |
---|---|---|---|---|
0.2 | 0.13 | 0.2 | 16 | > 100% |
Table 3 Shot peening parameters
Shot size (mm) | Intensity (mmA) | Air pressure (MPa) | Time (s) | Coverage |
---|---|---|---|---|
0.2 | 0.13 | 0.2 | 16 | > 100% |
Fig. 4 Typical precipitates in the modified axle steel: a microstructure of N steel; b EDS of the marked precipitate in N steel; c microstructure of Q?+?T steel; d EDS of the marked precipitate in Q?+?T steel
Materials | Yield strength, σs (MPa) | Tensile strength, σb (MPa) | Elongation, δ (%) | Reduction of area, Ψ (%) |
---|---|---|---|---|
N steel | 443 | 652 | 23.5 | 67.9 |
Q + T steel | 857 | 932 | 21.3 | 66.8 |
Domestic EA4T | 627 | 770 | 22.5 | 70.0 |
Imported EA4T | 630 | 767 | 21.5 | 67.0 |
Table 4 Tensile properties of axle steels
Materials | Yield strength, σs (MPa) | Tensile strength, σb (MPa) | Elongation, δ (%) | Reduction of area, Ψ (%) |
---|---|---|---|---|
N steel | 443 | 652 | 23.5 | 67.9 |
Q + T steel | 857 | 932 | 21.3 | 66.8 |
Domestic EA4T | 627 | 770 | 22.5 | 70.0 |
Imported EA4T | 630 | 767 | 21.5 | 67.0 |
Surface roughness | Induction hardening | Shot peening | ||
---|---|---|---|---|
Before treatment | After treatment (including grinding) | Before treatment | After treatment | |
Ra (μm) | 0.186 | 0.196 | 0.179 | 1.528 |
Rz (μm) | 1.686 | 1.718 | 1.732 | 13.966 |
Table 5 Surface roughness of the axle samples treated by induction hardening and shot peening
Surface roughness | Induction hardening | Shot peening | ||
---|---|---|---|---|
Before treatment | After treatment (including grinding) | Before treatment | After treatment | |
Ra (μm) | 0.186 | 0.196 | 0.179 | 1.528 |
Rz (μm) | 1.686 | 1.718 | 1.732 | 13.966 |
Fig. 9 Microstructures of the induction hardened sample: a gradient microstructure in the surface layer; b microstructure of the fully hardened zone (5 μm from surface); c microstructure of transition zone (200 μm from surface); d microstructure of matrix (3 mm from surface)
Fig. 10 Microstructures of the shot peened sample: a gradient microstructure in the surface layer; b microstructure of the severe plastic deformation zone (2 μm from surface); c microstructure of transition zone (20 μm from surface); d microstructure of matrix (500 μm from surface)
Strengthening treatment | Original material | k (%)a | Λ (mm)b | σr (MPa)c | d (mm)d | R (μm)e | Nf |
---|---|---|---|---|---|---|---|
Induction hardening | N steel | 200 | 2.5 | 471 | 2.00 | 0.01 | > 800 |
Shot peening | Q + T steel | 20 | 0.4 | 492 | 0.25 | 0.349 | 2-8 |
Table 6 Strengthening effect comparison of two surface strengthening technologies
Strengthening treatment | Original material | k (%)a | Λ (mm)b | σr (MPa)c | d (mm)d | R (μm)e | Nf |
---|---|---|---|---|---|---|---|
Induction hardening | N steel | 200 | 2.5 | 471 | 2.00 | 0.01 | > 800 |
Shot peening | Q + T steel | 20 | 0.4 | 492 | 0.25 | 0.349 | 2-8 |
[1] |
U. Zerbst, K. Mädler, H. Hintze, Eng. Fract. Mech. 72, 163 (2005)
DOI URL |
[2] |
C. Song, M.X. Shen, X.F. Lin, D.W. Liu, M.H. Zhu, Fatigue Fract. Eng. Mater. Struct. 37, 72 (2014)
DOI URL |
[3] | J. Zhu, J. Gu, H. Zhou, S. Liu, M. Cai, China Railway Sci. 36, 58 (2015) |
[4] |
K. Hirakawa, K. Toyama, M. Kubota, Int. J. Fatigue 20, 135 (1998)
DOI URL |
[5] | M. Novosad, R. Fajkoš, B. Řeha, R. Řezníček, Proc. Eng 2, 2259 (2010) |
[6] |
P. Delgado, I.I. Cuesta, J.M. Alegre, A. Díaz, Precis. Eng. 46, 1 (2016)
DOI URL |
[7] |
S. Hassani-Gangaraj, A. Moridi, M. Guagliano, A. Ghidini, M. Boniardi, Int. J. Fatigue 62, 67 (2014)
DOI URL |
[8] | C.X. Ren, Q. Wang, Z.J. Zhang, Y.K. Zhu, Z.F. Zhang, Acta Metall. Sin. -Engl. Lett. 30, 212 (2017) |
[9] |
L. Trško, O. Bokůvka, F. Nový, M. Guagliano, Mater. Des. 57, 103 (2014)
DOI URL |
[10] | J.C. Pang, S.X. Li, Z.G. Wang, Z.F. Zhang, Mater. Sci. Eng. A 564, 331 (2013) |
[11] |
S. Bagheri, M. Guagliano, Surf. Eng. 25, 3 (2009)
DOI URL |
[12] |
L. Bertini, V. Fontanari, Int. J. Fatigue 21, 611 (1999)
DOI URL |
[13] |
R. Fajkoš, R. Zima, B. Strnadel, Fatigue Fract. Eng. Mater. Struct. 38, 1255 (2015)
DOI URL |
[14] |
S. Wang, Y. Li, M. Yao, R. Wang, J. Mater. Process. Technol. 73, 57 (1998)
DOI URL |
[15] | K. Hirakawa, M. Kubota, Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 215, 73 (2001) |
[16] |
T. Makino, H. Sakai, C. Kozuka, Y. Yamazaki, M. Yamamoto, K. Minoshima, Int. J. Fatigue 132, 105361 (2020)
DOI URL |
[17] |
T. Makino, T. Kato, K. Hirakawa, Eng. Fract. Mech. 78, 810 (2011)
DOI URL |
[18] |
X. Li, J. Zhang, B. Yang, J. Zhang, M. Wu, L. Lu, J. Mater. Process. Technol. 275, 116320 (2020)
DOI URL |
[19] |
D. Kumar, S. Idapalapati, W. Wang, S. Narasimalu, Materials. 12, 2503 (2019)
DOI URL |
[20] |
E. Maleki, O. Unal, K.R. Kashyzadeh, Surf. Coat. Technol. 344, 62 (2018)
DOI URL |
[21] |
V. Savaria, F. Bridier, P. Bocher, Int. J. Fatigue 85, 70 (2016)
DOI URL |
[22] |
S. Bagherifard, I. Fernandez-Pariente, R. Ghelichi, M. Guagliano, Int. J. Fatigue 65, 64 (2014)
DOI URL |
[23] | K. Lu, J. Lu, Mater. Sci. Eng. A 375-377, 38 (2004) |
[24] |
K. Dai, L. Shaw, Int. J. Fatigue 30, 1398 (2008)
DOI URL |
[25] |
N. Hansen, Scr. Mater. 51, 801 (2004)
DOI URL |
[26] | P. Zhang, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 529, 62 (2011) |
[27] |
N.A. Fleck, K.J. Kang, M.F. Ashby, Acta Metall. Mater. 42, 365 (1994)
DOI URL |
[28] |
R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang, J. Mater. Sci. Technol. 70, 233 (2021)
DOI |
[29] |
R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang, J. Mater. Sci. Technol. 70, 250 (2021)
DOI |
[30] |
G.H. Majzoobi, R. Azizi, A. Alavi Nia, J. Mater. Process. Technol. 164-165, 1226 (2005)
DOI URL |
[31] |
Y.F. Al-Obaid, Mech. Mater. 19, 251 (1995)
DOI URL |
[32] |
T. Hong, J.Y. Ooi, B. Shaw, Eng. Fail. Anal. 15, 1097 (2008)
DOI URL |
[33] |
J. Liu, M. Pang, Int. J. Fatigue 43, 134 (2012)
DOI URL |
[34] |
D. Tong, J. Gu, F. Yang, J. Mater. Process. Technol. 262, 277 (2018)
DOI URL |
[35] | A. Niesłony, C.E. Dsoki, H. Kaufmann, P. Krug, Int. J. Fatigue 30, 1967 (2008) |
[36] |
R. Liu, Z.J. Zhang, P. Zhang, Z.F. Zhang, Acta Mater. 83, 341 (2015)
DOI URL |
[37] |
C.W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Z. Zhang, Acta Mater. 103, 781 (2016)
DOI URL |
[38] | Z.F. Zhang, R. Liu, Z.J. Zhang, Y.Z. Tian, P. Zhang, Acta Metall Sin. 54, 1693 (2018) |
[39] | O. Basquin, Proc. ASTM 10, (1910). |
[40] | J. Zhang, L. Lu, K. Shiozawa, X. Shen, H. Yi, W. Zhang, Mater. Sci. Eng. A 528, 1615 (2011) |
[41] |
H. Li, L. He, K. Gai, R. Jiang, C. Zhang, M. Li, Mater. Des. 87, 863 (2015)
DOI URL |
[42] |
N.T. A, Y.S. A, H.U. A, S.T. A, Scr. Mater. 40, 795 (1999).
DOI URL |
[43] |
Y.Z. Tian, J.J. Li, P. Zhang, S.D. Wu, Z.F. Zhang, M. Kawasaki, T.G. Langdon, Acta Mater. 60, 269 (2012)
DOI URL |
[44] | Z.G. Liu, T.I. Wong, W. Huang, N. Sridhar, S.J. Wang, Acta Metall. Sin. -Engl. Lett. 30, 630 (2017) |
[1] | Z.G. Liu, T.I. Wong, W. Huang, N. Sridhar, S.J. Wang. Effect of Surface Polishing Treatment on the Fatigue Performance of Shot-Peened Ti-6Al-4V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 630-640. |
[2] | Shou-Ming Yu, Dao-Xin Liu, Xiao-Hua Zhang, Cheng-Song Liu. A Comparison Study of Wear and Fretting Fatigue Behavior Between Cr-alloyed Layer and Cr-Ti Solid-solution Layer [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8): 782-792. |
[3] | Zuoyan Ye, Daoxin Liu, Chongyang Li, Xiaoming Zhang, Zhi Yang, Mingxia Lei. Effect of Shot Peening and Plasma Electrolytic Oxidation on the Intergranular Corrosion Behavior of 7A85 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 705-713. |
[4] | D.G. Lee, K.C. Jang, J.M. Kuk , I.S. Kim. FATIGUE LIVES FOR INDUCTION HARDENED SHAFTS MATERIALS ACCORDING TO THE ENVIRONMENTAL TEMPERATURES [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(5): 585-593 . |
[5] | K.W.Xu;N.S.Hu and J.W.He(State-Key Laboratory for Mechanical Behavior of Materials,Xi'an Jiaotong University, Xi'an 710049, China Manuscript received 26 August 1996). EFFECT OF MICROSTRUCTURE ON FATIGUE CRACK INITIATION OF SHOT PEENED COPPER AND BRASS [J]. Acta Metallurgica Sinica (English Letters), 1996, 9(6): 607-611. |
[6] | CHENG Yuren SHI Xiaofeng PENG Xiang HOU Binglin Northern Jiaotong University,Beijing,China. DETERMINATION OF CLOSURE EFFECT IN FATIGUE CRACKING BY MEANS OF COMPLIANCE TECHNIQUE AND NUMERICAL METHOD [J]. Acta Metallurgica Sinica (English Letters), 1992, 5(1): 38-42. |
[7] | TAO Zengyi LUO Jiaming Huazhong University of Science and Technology,Wuhan,China TAO Zengyi,Faculty of Metallic Materials,Dept.of Mechanical Engineering No.2,Huazhong University of Science and Technology,Wuhan 430074,China. INFLUENCE OF SURFACE HARDENING ON CONTACT FATIGUE LIFE OF NODULAR CAST IRON [J]. Acta Metallurgica Sinica (English Letters), 1990, 3(3): 188-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||