Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (8): 1329-1342.DOI: 10.1007/s40195-022-01373-y
Previous Articles Next Articles
Fei Qiang1,2, Wen Wang1(), Ke Qiao1, Pai Peng1, Ting Zhang1, Xiao-Hu Guan1, Jun Cai1, Qiang Meng3,4, Hua-Xia Zhao3,4, Kuai-She Wang1(
)
Received:
2021-08-05
Revised:
2021-11-04
Accepted:
2021-11-05
Online:
2022-02-02
Published:
2022-02-02
Contact:
Wen Wang,Kuai-She Wang
About author:
Kuai‑She Wang wangkuaishe888@126.comFei Qiang, Wen Wang, Ke Qiao, Pai Peng, Ting Zhang, Xiao-Hu Guan, Jun Cai, Qiang Meng, Hua-Xia Zhao, Kuai-She Wang. Microstructure and Mechanical Properties in Friction Stir Welded Thick Al-Zn-Mg-Cu Alloy Plate[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1329-1342.
Add to citation manager EndNote|Ris|BibTeX
Zn | Mg | Cu | Si | Fe | Zr | Ti | Al |
---|---|---|---|---|---|---|---|
4.57 | 2.01 | 1.92 | 0.01 | 0.03 | 0.05 | 0.01 | Bal. |
Table 1 Chemical composition of the Al-Zn-Mg-Cu alloy (wt%)
Zn | Mg | Cu | Si | Fe | Zr | Ti | Al |
---|---|---|---|---|---|---|---|
4.57 | 2.01 | 1.92 | 0.01 | 0.03 | 0.05 | 0.01 | Bal. |
Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|
530 ± 5 | 580 ± 4 | 17.5 ± 2.6 | 203 ± 8 |
Table 2 Mechanical properties of the Al-Zn-Mg-Cu alloy
Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|
530 ± 5 | 580 ± 4 | 17.5 ± 2.6 | 203 ± 8 |
Fig. 1 a Illustration of FSW and sampling positions for microstructure observation and property testing, b schematic drawing of the FSW tool. WD, RD, TD, ND represent welding, rolling, transversal and normal directions, respectively. AS and RS are the advancing and retreating sides, respectively
Fig. 2 Schematic diagram of temperature measurement: a distribution of temperature measurement points along the thickness direction, b distribution of temperature measurement points along the transverse direction
Fig. 4 Temperature profiles along different thicknesses of the plate: a changing curves of AS, b changing curves of RS, c peak temperature in different thicknesses
Fig. 6 Microstructures of the BM: a EBSD morphology, b grain boundary distribution map, c TEM bright field phase, d [001]Al electron diffraction pattern, e [001]Al standard diffraction pattern
Fig. 8 Microstructures of different zones of the FSW joint: a1 SZ-Layer 1, a2 SZ-Layer 2, a3 SZ-Layer 3, a4 SZ-Layer 4, b TMAZ, c1 HAZ-Layer 1, c2 HAZ-Layer 2, c4 HAZ-Layer 4
Fig. 9 Grain boundary distribution in different zones of the FSW joint: a1 SZ-Layer 1, a2 SZ-Layer 2, a3 SZ-Layer 3, a4 SZ-Layer 4, b TMAZ, c1 HAZ-Layer 1, c2 HAZ-Layer 2, c4 HAZ-Layer 4 (Blue arrows represent fine recrystallized grains; Black arrows represent HAGBs bulging; Red arrows represent the grains divided by LAGBs)
Fig. 10 Precipitated phase morphology and selected area diffraction pattern (SADP): a1 SZ-Layer 1, a4 SZ-Layer 4, b TMAZ, c1 HAZ-Layer 1, c4 HAZ-Layer 4, d, e SADP of the precipitated phase in a1 c1, respectively. (Green arrows represent η`; red arrows represent Al3Zr; blue arrows represent η)
Fig. 11 a Cross-sectional hardness distribution of the FSW joint, b the lowest hardness coordinates linear fitting results, (AS-LHC: the lowest hardness coordinates in the advancing side; RS-LHC: the lowest hardness coordinates in the retreating side), c shape coordinates of the stir tool
Samples | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) | Efficiency of UTS (%) |
---|---|---|---|---|
FSW Joint | 257 ± 4 | 369 ± 2 | 4.0 ± 0.6 | 64 |
Layer 1 | 257 ± 2 | 360 ± 7 | 2.4 ± 0.5 | 62 |
Layer 2 | 246 ± 5 | 360 ± 3 | 4.6 ± 0.6 | 62 |
Layer 3 | 242 ± 4 | 361 ± 6 | 5.3 ± 0.7 | 62 |
Layer 4 | 247 ± 3 | 363 ± 3 | 6.0 ± 0.4 | 63 |
Table 3 Tensile test results of the joint
Samples | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) | Efficiency of UTS (%) |
---|---|---|---|---|
FSW Joint | 257 ± 4 | 369 ± 2 | 4.0 ± 0.6 | 64 |
Layer 1 | 257 ± 2 | 360 ± 7 | 2.4 ± 0.5 | 62 |
Layer 2 | 246 ± 5 | 360 ± 3 | 4.6 ± 0.6 | 62 |
Layer 3 | 242 ± 4 | 361 ± 6 | 5.3 ± 0.7 | 62 |
Layer 4 | 247 ± 3 | 363 ± 3 | 6.0 ± 0.4 | 63 |
[1] | J.C. Williams, E.A. Starke Jr., Acta Mater. 51, 5775 (2003) |
[2] |
T. Dursun, C. Soutis, Mater. Des. 56, 862 (2014)
DOI URL |
[3] |
M.A. Khan, Y. Wang, G. Yasin, F. Nazeer, A. Malik, W.Q. Khan, T. Ahmad, H. Zhang, M.A. Afifi, Mater Charact 167, 110472 (2020)
DOI URL |
[4] |
M.M. Amrei, H. Monajati, D. Thibault, Y. Verreman, L. Germain, P. Bocher, Mater. Charact. 111, 128 (2016)
DOI URL |
[5] |
F.Y. Shu, Y.M. Sun, H.Y. Zhao, X.G. Song, S.H. Sui, W.X. He, P. He, B. Liu, B.S. Xu, J. Mater. Res. 31, 3948 (2016)
DOI URL |
[6] |
H.Q. Lin, Y.L. Wu, S.D. Liu, Mater. Charact. 146, 159 (2018)
DOI URL |
[7] |
L. Zhang, H.L. Zhong, S.C. Li, H.J. Zhao, J.Q. Chen, L. Qi, Int J Fatigue . 135, 105556 (2020)
DOI URL |
[8] |
J.N. Li, M.L. Su, W.J. Qi, C. Wang, P. Zhao, F. Ni, K.G. Liu, J. Manuf. Process. 52, 263 (2020)
DOI URL |
[9] |
C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, J. Mater. Sci. Technol. 41, 105 (2020)
DOI |
[10] |
A. Silva-Magalhães, J. De Backer, J. Martin, G. Bolmsjö, J. Manuf. Process. 39, 12 (2019)
DOI |
[11] |
P. Upadhyay, A.P. Reynolds, JOM . 67, 1022 (2015)
DOI URL |
[12] | W.F. Xu, J.H. Liu, G.H. Luan, C.L. Dong, Mater. Des. 30, 1886 (2009) |
[13] |
Y.Q. Mao, L.M. Ke, F.C. Liu, Y.H. Chen, L. Xing, Int. J. Adv. Manuf. Technol. 86, 141 (2016)
DOI URL |
[14] |
N. Guo, Y.L. Fu, Y.Z. Wang, Q. Meng, Y.X. Zhu, Mater. Des. 113, 273 (2017)
DOI URL |
[15] | Y.X. Zhao, Z.Y. Yang, J.P. Domblesky, J.M. Han, Z.Q. Li, X.L. Liu, Mater. Sci. Eng. A 760, 316 (2019) |
[16] |
M.M.Z. Ahmed, B.P. Wynne, W.M. Rainforth, A. Addison, J.P. Martin, P.L. Threadgill, Metall. Mater. Trans. A 50, 271 (2019)
DOI URL |
[17] |
W.F. Xu, Y.X. Luo, W. Zhang, M.W. Fu, J. Mater. Sci. Technol. 34, 173 (2018)
DOI URL |
[18] |
Z.G. Chen, Z.G. Yuan, J.K. Ren, J. Alloys Compd. 828, 154446 (2020)
DOI URL |
[19] |
M. Vlach, J. Cizek, V. Kodetova, M. Leibner, M. Cieslar, P. Harcuba, L. Bajtosova, H. Kudrnova, T. Vlasak, V. Neubert, E. Cernoskova, P. Kutalek, Mater. Des. 193, 108821 (2020)
DOI URL |
[20] |
Y.Q. Mao, L.M. Ke, F.C. Liu, Q. Liu, C.P. Huang, L. Xing, Mater. Des. 62, 334 (2014)
DOI URL |
[21] | Y.Q. Mao, P. Yang, L.M. Ke, Y. Xu, Y.H. Chen, Acta Metall. Sin. -Engl. Lett. (2021). https://doi.org/10.1007/s40195-021-01307-0 |
[22] |
R. Zhu, W.B. Gong, H. Cui, Int. J. Adv. Manuf. Technol. 108, 331 (2020)
DOI URL |
[23] | C.C. Du, Q.H. Pan, S.J. Chen, S. Tian, Mater. Sci. Eng. A 772, 138692 (2020) |
[24] |
M. Xie, W. Huang, H. Chen, L. Gong, W. Xie, H. Wang, B. Yang, J. Alloys Compd. 851, 156893 (2021)
DOI URL |
[25] |
H.Q. Lin, Y.L. Wu, S.D. Liu, X.R. Zhou, Mater. Charact. 141, 74 (2018)
DOI URL |
[26] |
J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Acta Mater. 51, 713 (2003)
DOI URL |
[27] |
P. Peng, K.S. Wang, W. Wang, P. Han, T. Zhang, Q. Liu, S.Y. Zhang, H.D. Wang, K. Qiao, J. Liu, Mater Charact. 163, 110283 (2020)
DOI URL |
[28] |
X.C. Liu, Y.F. Sun, T. Nagira, H. Fujii, Mater. Charact. 137, 24 (2018)
DOI URL |
[29] | H.J. McQueen, W. Blum, Mater. Sci. Eng. A 290, 95 (2000) |
[30] | J.Q. Su, T.W. Nelson, C.J. Sterling, Mater. Sci. Eng. A 405, 277 (2005) |
[31] |
W.F. Xu, Y.X. Luo, M.W. Fu, Mater. Charact. 138, 48 (2018)
DOI URL |
[32] |
X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma, J. Mater. Sci. Technol. 35, 972 (2019)
DOI |
[33] |
Y.Q. Mao, L.M. Ke, Y.H. Chen, F.C. Liu, L. Xing, J. Mater. Sci. Technol. 34, 228 (2018)
DOI URL |
[34] |
P.B. Prangnell, C.P. Heason, Acta Mater. 53, 3179 (2005)
DOI URL |
[35] | H. Zhao, Y.Q. Chen, B. Gault, S.K. Makineni, D. Ponge, D. Raabe, Mater. 10, 100641 (2020) |
[36] |
A. Deschamps, F. Livet, Y. Brechet, Acta Mater. 47, 281 (1998)
DOI URL |
[37] | V. Kodetova, M. Vlach, J. Cizek, M. Cieslar, L. Bajtosova, H. Kudrnova, M. Leibner, V. Sima, Acta Phys. Pol. A. 137, 250 (2020) |
[38] | M. Nicolas, Dissertation, Institut National Polytechnique de Grenoble - INPG, 2002 |
[1] | Chang Liu, Jianbo Zhang, Yikai Yang, Xingchuan Xia, Tian He, Jian Ding, Ying Tang, Zan Zhang, Xueguang Chen, Yongchang Liu. Hot Deformation Behavior of ATI 718Plus Alloy with Different Microstructures [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1383-1396. |
[2] | Haoyang Yu, Wei Fang, Jinfei Zhang, Jiaxin Huang, Jiaohui Yan, Xin Zhang, Juan Wang, Jianhang Feng, Fuxing Yin. Microstructural Evolution of Co35Cr25Fe30Ni10 TRIP Complex Concentrated Alloy with the Addition of Minor Cu and Its Effect on Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1291-1300. |
[3] | Xiong Zhou, Qichi Le, Chenglu Hu, Ruizhen Guo, Tong Wang, Chunming Liu, Dandan Li, Xiaoqiang Li. Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1301-1316. |
[4] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. |
[5] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[6] | Zhenye Chen, Zhangguo Lin, Jianjun Qi, Yang Feng, Liqing Chen, Guodong Wang. Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1131-1142. |
[7] | Ming-Jie Zhao, Liang Huang, Chang-Min Li, Jia-Hui Xu, Xu-Yang Li, Jian-Jun Li, Peng-Chuan Li, Chao-Yuan Sun. Investigation and Modeling of Austenite Grain Evolution for a Typical High-strength Low-alloy Steel during Soaking and Deformation Process [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 996-1010. |
[8] | Hao Gu, Zhide Li, Kaiguang Luo, Laxman Bhatta, Hanqing Xiong, Yun Zhang, Charlie Kong, Hailiang Yu. Enhanced Mechanical Properties of AA5083 Matrix Composite via Introducing Al0.5CoCrFeNi Particles and Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 879-889. |
[9] | Wen Wang, Shan-Yong Chen, Ke Qiao, Pai Peng, Peng Han, Bing Wu, Chen-Xi Wang, Jia Wang, Yu-Hao Wang, Kuai-She Wang. Microstructure, Mechanical Properties, and Corrosion Behavior of Mg-Al-Ca Alloy Prepared by Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 703-713. |
[10] | Junlei Zhang, Han Liu, Xiang Chen, Qin Zou, Guangsheng Huang, Bin Jiang, Aitao Tang, Fusheng Pan. Deformation Characterization, Twinning Behavior and Mechanical Properties of Dissimilar Friction-Stir-Welded AM60/AZ31 Alloys Joint During the Three-Point Bending [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 727-744. |
[11] | Peng Gong, Ying-Ying Zuo, Shu-De Ji, De-Jun Yan, Deng-Chang Li, Zhen Shang. Non-keyhole Friction Stir Welding for 6061-T6 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 763-772. |
[12] | Jinjin Yao, Shengyang Pang, Yuanhong Wang, Chenglong Hu, Rida Zhao, Jian Li, Sufang Tang, Hui-Ming Cheng. Effect of C/SiC Volume Ratios on Mechanical and Oxidation Behaviors of Cf/C-SiC Composites Fabricated by Chemical Vapor Infiltration Technique [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 801-811. |
[13] | Yu-Qing Mao, Ping Yang, Li-Ming Ke, Yang Xu, Yu-Hua Chen. Microstructure Evolution and Recrystallization Behavior of Friction Stir Welded Thick Al-Mg-Zn-Cu alloys: Influence of Pin Centerline Deviation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 745-756. |
[14] | Zhengran Liu, Xi Zhao, Kai Chen, Siqi Wang, Xianwei Ren, Zhimin Zhang, Yong Xue. Microstructural Evolution and Anisotropic Weakening Mechanism of ZK60 Magnesium Alloy Processed by Isothermal Repetitive Upsetting Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 839-852. |
[15] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||