Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (8): 1357-1364.DOI: 10.1007/s40195-022-01384-9
Previous Articles Next Articles
Jialin Yang1, Xing Li2(), Hanbo Yao2, Yingchun Guan2,3,4(
)
Received:
2021-03-18
Revised:
2021-12-01
Accepted:
2021-12-24
Online:
2022-02-16
Published:
2022-02-16
Contact:
Xing Li,Yingchun Guan
About author:
Yingchun Guan guanyingchun@buaa.edu.cnJialin Yang, Xing Li, Hanbo Yao, Yingchun Guan. Interfacial Features of Stainless Steel/Titanium Alloy Multi-metal Fabricated by Laser Additive Manufacturing[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1357-1364.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic of the LAM process for fabricating the 316L stainless steel/Ti6Al4V alloy multi-metal a, scanning path during LAM b, fabricated sample c
Points | Chemical compositions (at%) | Possible phase | |||||
---|---|---|---|---|---|---|---|
Fe | Cr | Ni | Ti | Al | V | ||
1A | 30.3 | 4.28 | 2.2 | 54.64 | 6.36 | .22 | β-Ti + FeTi |
1B | 66.33 | 19.88 | 6.06 | 6.08 | 0.63 | 1.02 | χ |
1C | 82.89 | 10.2 | 5.0 | 0.29 | 0.02 | 0 | γ-Fe |
2A | 33.7 | 3.92 | 1.79 | 54.77 | 4.22 | 1.6 | β-Ti + FeTi |
2B | 55.76 | 8.58 | 2.77 | 28.95 | 2.43 | 1.5 | Fe2Ti |
2C | 56.46 | 23.58 | 5.01 | 12.82 | 1.41 | 0.72 | χ |
2D | 78.95 | 10.29 | 4.23 | 5.25 | 0.99 | 0.29 | γ-Fe |
3A | 35.96 | 9.25 | 2.82 | 40.39 | 5.12 | 2.46 | β-Ti + FeTi |
3B | 53.72 | 6.73 | 3.73 | 31.51 | 2.66 | 1.65 | Fe2Ti |
3C | 67.04 | 20.37 | 6.2 | 5.26 | 2.17 | 0.96 | χ |
3D | 77.6 | 9.12 | 4.01 | 7.09 | 1.35 | 0.83 | γ-Fe |
Table 1 EDS results at regions highlighted in the SEM images of the three samples
Points | Chemical compositions (at%) | Possible phase | |||||
---|---|---|---|---|---|---|---|
Fe | Cr | Ni | Ti | Al | V | ||
1A | 30.3 | 4.28 | 2.2 | 54.64 | 6.36 | .22 | β-Ti + FeTi |
1B | 66.33 | 19.88 | 6.06 | 6.08 | 0.63 | 1.02 | χ |
1C | 82.89 | 10.2 | 5.0 | 0.29 | 0.02 | 0 | γ-Fe |
2A | 33.7 | 3.92 | 1.79 | 54.77 | 4.22 | 1.6 | β-Ti + FeTi |
2B | 55.76 | 8.58 | 2.77 | 28.95 | 2.43 | 1.5 | Fe2Ti |
2C | 56.46 | 23.58 | 5.01 | 12.82 | 1.41 | 0.72 | χ |
2D | 78.95 | 10.29 | 4.23 | 5.25 | 0.99 | 0.29 | γ-Fe |
3A | 35.96 | 9.25 | 2.82 | 40.39 | 5.12 | 2.46 | β-Ti + FeTi |
3B | 53.72 | 6.73 | 3.73 | 31.51 | 2.66 | 1.65 | Fe2Ti |
3C | 67.04 | 20.37 | 6.2 | 5.26 | 2.17 | 0.96 | χ |
3D | 77.6 | 9.12 | 4.01 | 7.09 | 1.35 | 0.83 | γ-Fe |
Fig. 5 EBSD micrographs showing phase composition at the interfaces: a-c phase maps, d-f orientation imaging maps. (In phase maps, blue region denotes β-Ti and FeTi, green region denotes Fe2Ti, yellow region denotes α′-Ti, red region denotes γ-Fe, white region denotes unidentified phase)
Fig. 6 Schematic diagram of the multi-metal during LAM process: a fluid flow in the melting pool, b-d interfacial elemental distribution, e-g interfacial phase transformation
[1] | C. Tan, K.S. Zhou, W.Y. Ma, L. Min, Mater. Des. 77, 155 (2018) |
[2] | M. Ansari, E. Jabari, E. Toyserkani, J. Mater. Process. Technol. 117117, 294 (2021) |
[3] | B. Chen, X. Li, H. Cui, P. Hua, Y.T. Chen, C. Wang, Y.C. Wu, W. Zhou, Int. J. Modern Phys. B 2050123, 34 (2020) |
[4] | A. Arun Negemiya, S. Rajakumar, V. Balasubramanian, Mater. Res. Exp. 6, 066572 (2019) |
[5] | Q. Song, Z.W. Ma, S.D. Ji, Q.H. Li, L.F. Wang, R. Li, Acta Metall. Sin. -Engl. Lett. 83, 32 (2019) |
[6] | Z.W. Ma, Y.Y. Jin, S.D. Ji, X.C. Meng, Q.H. Li, J. Mater. Sci. Technol. 94, 35 (2019) |
[7] |
Y. Zhang, D.Q. Sun, X.Y. Gu, H.M. Li, Mater. Lett. 152, 185 (2016)
DOI URL |
[8] | Y. Zhang, J.P. Zhou, D.Q. Sun, X.Y. Gu, J. Mater. Res. Technol. 1662, 9 (2020) |
[9] | Q.L. Chu, X.W. Tong, S. Xu, M. Zhang, F.X. Yan, P. Cheng, C. Yan, J. Alloys Compd. 154389, 828 (2020) |
[10] | S.F. Zhou, M. Xie, C.Y. Wu, Y.L. Yi, D.C. Chen, L.C. Zhang, J. Mater. Sci. Technol. 81, 104 (2022) |
[11] | M. Xie, S.F. Zhou, S.Z. Zhao, J.B. Zhao, D.C. Chen, L.C. Zhang, J. Alloys Compd. 155592, 838 (2020) |
[12] | S.L. Sing, L.P. Lam, D.Q. Zhang, Z.H. Liu, C.K. Chua, Mater. Charact. 220, 107 (2015) |
[13] | Y.N. Zhang, A. Bandyopadhyay, Addit. Manuf. 100783, 29 (2019) |
[14] | M.G. Scaramuccia, A.G. Demir, L. Caprio, O. Tassa, B. Previtali, Powder Technol. 376, 367 (2020) |
[15] | C.F. Yu, Y. Zhong, P. Zhang, Z.J. Zhang, C.C. Zhao, Z.F. Zhang, Z.J. Shen, W. Liu, Acta Metall. Sin. Engl. Lett. 539, 33 (2020) |
[16] | R.W. Schutz, H.B. Watkins, Mater. Sci. Eng. A 305, 243 (1998) |
[17] |
M.L. Loureno, G.C. Cardoso, K.D.S.J. Sousa, T.A.G. Donato, C.R. Grandini, Sci. Rep. 10, 6298 (2020)
DOI URL |
[18] | S. Kundu, D. Roy, S. Chatterjee, D. Olson, B. Mishra, Mater. Des. 560, 37 (2012) |
[19] | M. Fazel-Najafabadi, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, Mater. Des. 1824, 32 (2011) |
[20] | S.H. Chen, M.X. Zhang, J.H. Huang, C.J. Cui, H. Zhang, X.K. Zhao, Mater. Des. 504, 53 (2014) |
[21] | H.C. Chen, G.J. Bi, B.Y. Lee, C.K. Cheng, J. Mater. Process. Technol. 58, 231 (2016) |
[22] | Y.C. Bai, J.Y. Zhang, C.L. Zhao, C.J. Li, H. Wang, Mater. Charact. 110489, 167 (2020) |
[23] | L.D. Bobbio, R.A. Otis, J.P. Borgonia, R. Peter Dillon, A.A. Shapiro, Z.K. Liu, A.M. Beese, Acta Mater. 133, 127 (2017) |
[24] | G. Satoh, Y.L. Yao, C. Qiu, Int. J. Adv. Manuf. Technol. 469, 66 (2013) |
[25] | C. Yu, M.F. Wu, H. Lu, Sci. Technol. Weld. Joi. 265, 11 (2006) |
[26] | T. Takahashi, Y. Minamino, J. Alloys. Compd. 168, 545 (2012) |
[27] | A. Carman, L.C. Zhang, O.M. Ivasishin, D.G. Savvakin, M.V. Matviychuk, E.V. Pereloma, Mater. Sci. Eng. A 1686, 528 (2011) |
[28] | C.F. Tey, X. Tan, S.L. Sing, W.Y. Yeong, Addit. Manuf. 100970, 31 (2020) |
[29] | C.L. Tan, Y.X. Chew, G.J. Bi, D. Wang, W.Y. Ma, Y.Q. Yang, K. Zhou, J. Mater. Sci. Technol. 217, 72 (2021) |
[30] | T.N. Prasanthi, C. Sudha, S. Raju, S. Saroja, J. Alloys. Compd. 151726, 808 (2019) |
[1] | Rong Xu, Ruidi Li, Tiechui Yuan, Hongbin Zhu, Ping Li. Microstructure and Mechanical Properties of TiC-Reinforced Al-Mg-Sc-Zr Composites Additively Manufactured by Laser Direct Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 411-424. |
[2] | Zhenhao Li, Ling Qin, Baisong Guo, Junping Yuan, Zhiguo Zhang, Wei Li, Jiawei Mi. Characterization of the Convoluted 3D Intermetallic Phases in a Recycled Al Alloy by Synchrotron X-ray Tomography and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 115-123. |
[3] | Muhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212. |
[4] | Xiao Li, Bo Guan, Yun-Fei Jia, Yun-Chang Xin, Cheng-Cheng Zhang, Xian-Cheng Zhang, Shan-Tung Tu. Microstructural Evolution, Mechanical Properties and Thermal Stability of Gradient Structured Pure Nickel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 951-960. |
[5] | Qiang Yang, Shu-Hui Lv, Fan-Zhi Meng, Kai Guan, Bai-Shun Li, Xu-Hu Zhang, Jing-Qi Zhang, Xiao-Juan Liu, Jian Meng. Detailed Structures and Formation Mechanisms of Well-Known Al10RE2Mn7 Phase in Die-Cast Mg-4Al-4RE-0.3Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(2): 178-186. |
[6] | En-Yang Liu, Si-Rong Yu, Ming Yuan, Fan-Guo Li, Yan Zhao, Wei Xiong. Effects of Semi-solid Isothermal Heat Treatment on Microstructures and Damping Capacities of Fly Ash Cenosphere/AZ91D Composites [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(9): 953-962. |
[7] | Li-Xiong Xu, Hui-Bin Wu, Xin-Tian Wang. Influence of Microstructural Evolution on the Hot Deformation Behavior of an Fe-Mn-Al Duplex Lightweight Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 389-400. |
[8] | Jin-Long Fu, Hong-Jun Jiang, Kai-Kun Wang. Influence of Processing Parameters on Microstructural Evolution and Tensile Properties for 7075 Al Alloy Prepared by an ECAP-Based SIMA Process [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 337-350. |
[9] | Shuang Gao,Jie-Shan Hou,Kai-Xin Dong,Lan-Zhang Zhou. Influences of Cooling Rate After Solution Treatment on Microstructural Evolution and Mechanical Properties of Superalloy Rene 80 [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3): 261-271. |
[10] | Gang Wang,Li-Hui Lang,Wen-Jun Yu,Xi-Na Huang,Fei Li. Influences of Hot-Isostatic-Pressing Temperature on the Microstructure, Tensile Properties and Tensile Fracture Mode of 2A12 Powder Compact [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(10): 963-974. |
[11] | Yuanyuan Xiong, Ning Li, Huawen Jiang, Zhigang Li, Zhu Xu, Lin Liu. Microstructural Evolutions of AA7055 Aluminum Alloy Under Dynamic and Quasi-static Compressions [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 272-278. |
[12] | Zhouyu ZENG, Liqing CHEN, Fuxian ZHU,Xianghua LIU. Static recrystallization behavior of a martensitic heat-resistant stainless steel 403Nb [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(5): 381-389. |
[13] | Yan ZHAO, Jie ZHAO, Xiaona LI. Microstructural evolution and change in hardness during creep of NF709 austenitic stainless steel [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(3): 220-224. |
[14] | K.Yagi and F.Abe (National Research Institute for Metals, 1-2-1 Sengen, Tsukuba 305-0047, Japan). LONG-TERM CREEP AND RUPTURE PROPERTIES OF HEAT RESISTING STEELS AND ALLOYS [J]. Acta Metallurgica Sinica (English Letters), 1998, 11(6): 391-396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||