Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (1): 115-121.DOI: 10.1007/s40195-014-0178-4
• Orginal Article • Previous Articles Next Articles
Dan-Hui Hou1,2, Song-Mao Liang3, Rong-Shi Chen2(), Chuang Dong1, En-Hou Han2
Received:
2014-11-26
Revised:
2014-11-26
Online:
2015-01-10
Published:
2015-07-23
Dan-Hui Hou, Song-Mao Liang, Rong-Shi Chen, Chuang Dong, En-Hou Han. Effects of Sb Content on Solidification Pathways and Grain Size of AZ91 Magnesium Alloy[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1): 115-121.
Add to citation manager EndNote|Ris|BibTeX
Alloys | Al | Zn | Mn | Sb |
---|---|---|---|---|
AZ91 | 8.78 | 0.69 | 0.30 | - |
AZ91 + 0.1Sb | 8.84 | 0.65 | 0.32 | 0.09 |
AZ91 + 0.5Sb | 9.18 | 0.92 | 0.24 | 0.42 |
AZ91 + 1.0Sb | 8.66 | 0.90 | 0.26 | 1.02 |
Table 1 Chemical compositions of the investigated alloys (wt%)
Alloys | Al | Zn | Mn | Sb |
---|---|---|---|---|
AZ91 | 8.78 | 0.69 | 0.30 | - |
AZ91 + 0.1Sb | 8.84 | 0.65 | 0.32 | 0.09 |
AZ91 + 0.5Sb | 9.18 | 0.92 | 0.24 | 0.42 |
AZ91 + 1.0Sb | 8.66 | 0.90 | 0.26 | 1.02 |
Fig. 4 EBSD images of AZ91 + xSb alloys: a AZ91 alloy, average grain size is 217 μm; b AZ91 + 0.1Sb alloy, average grain size is 231 μm,; c AZ91 + 0.5Sb alloy, average grain size is 251 μm; d AZ91 + 1.0Sb alloy, average grain size is 246 μm
Alloys | Peak A | Peak B | ||
---|---|---|---|---|
T onset (°C) | T peak (°C) | T onset (°C) | T peak (°C) | |
AZ91 | 610 | 592 | 435 | 425 |
AZ91 + 0.1Sb | 607 | 592 | 429 | 423 |
AZ91 + 0.5Sb | 603 | 594 | 428 | 424 |
AZ91 + 1.0Sb | 602 | 594 | 426 | 423 |
Table 2 Characteristic temperatures obtained from the cooling curves of the central thermocouple
Alloys | Peak A | Peak B | ||
---|---|---|---|---|
T onset (°C) | T peak (°C) | T onset (°C) | T peak (°C) | |
AZ91 | 610 | 592 | 435 | 425 |
AZ91 + 0.1Sb | 607 | 592 | 429 | 423 |
AZ91 + 0.5Sb | 603 | 594 | 428 | 424 |
AZ91 + 1.0Sb | 602 | 594 | 426 | 423 |
Fig. 6 Comparison of the derivatives of total enthalpy (dH/dT) versus Temperature of AZ91 and AZ91 + 1.0Sb alloy under Scheil solidification simulation condition, a small peak referring to the formation of Mg3Sb2 phase can be easily seen at 546 °C on the curve of AZ91 + 1.0Sb alloy
Alloys | T α-Mg (°C) | T Mg3Sb2 (°C) | T γ-Mg17Al12 (°C) |
---|---|---|---|
AZ91 | 603 | - | 432 |
AZ91 + 0.1Sb | 602 | 477 | 432 |
AZ91 + 0.5Sb | 598 | 528 | 431 |
AZ91 + 1.0Sb | 600 | 546 | 430 |
Table 3 Predicted precipitation temperature of the three main phases under Scheil simulation
Alloys | T α-Mg (°C) | T Mg3Sb2 (°C) | T γ-Mg17Al12 (°C) |
---|---|---|---|
AZ91 | 603 | - | 432 |
AZ91 + 0.1Sb | 602 | 477 | 432 |
AZ91 + 0.5Sb | 598 | 528 | 431 |
AZ91 + 1.0Sb | 600 | 546 | 430 |
[1] | A.A. Luo,Int. Mater. Rev. 49, 13(2004) |
[2] | A.A. Luo, J. Magnes. Alloys 1, 2 (2013) |
[3] | C. Zhang, W. Cao, S.L. Chen, J. Zhu, F. Zhang, A.A. Luo, R. Schmid-Fetzer, JOM 66, 389 (2014) |
[4] | J. Xu, G. H. Wu, W.C. Liu, Y. Zhang, W. J. Ding, J.Magnesium Alloys 1, (2013) |
[5] | J. Liu, S. Lu, X. Dong, X. Xiao, G. Li,Met. Sci. Heat Treat. 55, 427(2013) |
[6] | A. Zafari, H.M. Ghasemi, R. Mahmudi,Mater. Des. 54, 544(2014) |
[7] | Y.A. Chen, H. Liu, R. Ye, G. Liu, Mater. Sci.Eng.A 587, 262 (2013) |
[8] | G. Mao, Q. Liu, Foundry 59, 614 (2010) |
[9] | H.L. Zhao, S.K. Guan, F.Y. Zheng, J. Mater.Res. 22, 2423(2007) |
[10] | N. Balasubramani, A. Srinivasan, U.T.S. Pillai, B.C. Pai, Mater. Sci.Eng.A 457, 275 (2007) |
[11] | Z. Yang, J. Li, J. Chang, H. Wang, X. Zhu, K. Zhang, S. Yu, Y. Cao,Hot Work. Technol. 5, 18(2004) |
[12] | G.Y. Yuan, Y.S. Sun, W.J. Ding,Scr. Mater. 43, 1009(2000) |
[13] | K.S. Sun, W.M. Zhang, X.G. Min, Acta Metall.Sin. (Engl. Lett.) 14, 330(2001) |
[14] | Y.S. Wang, J.Z. Yu, Q.W. Wang, W.J. Ding, Acta Metall.Sin. (Engl. Lett.) 16, 8(2003) |
[15] | Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, J. Robson, Acta Metall.Sin. (Engl. Lett.) 21, 313(2008) |
[16] | A. Srinivasan, J. Swaminathan, M.K. Gunjan, U.T.S. Pillai, B.C. Pai, Mater. Sci.Eng.A 527, 1395 (2010) |
[17] | N. Balasubramani, A. Srinivasan, U.T.S. Pillai, K. Raghukandan, B.C. Pai, J. Alloys Compd. 455, 168(2008) |
[18] | G. Nayyeri, R. Mahmudi, Mater. Sci.Eng.A 527, 669 (2010) |
[19] | Q.D. Wang, W.H. Chen, W.J. Ding, Y.P. Zhu, M. Mabuchi, Metall. Mater.Trans.A 32, 787 (2001) |
[20] | B.S. Wang, R.L. Xin, G.J. Huang, X.P. Chen, Q. Liu, J. Chin.Electron Microsc. Soc. 28, 20(2009) |
[21] | N. Gao, S.C. Wang, H.S. Ubhi, M.J. Starink, J. Mater. Sci. 40, 4971(2005) |
[22] | H. Jafari, M.H. Idris, A. Ourdjini, S. Farahany,Mater. Des. 50, 181(2013) |
[23] | S. Farahany, H.R. Bakhsheshi-Rad, M.H. Idris, M.R.A. Kadir, A.F. Lotfabadi, A. Ourdjini, Thermochim.Acta 527, 180 (2012) |
[24] | S.M. Liang, R.S. Chen, J.J. Blandin, M. Suery, E.H. Han, Mater. Sci.Eng.A 480, 365 (2008) |
[25] | A.K. Dahle, P.A. Tondel, C.J. Paradies, L. Arnberg, Metall. Mater.Trans.A 27, 2305 (1996) |
[26] | M. Malekan, S.G. Shabestari, Metall. Mater.Trans.A 40, 3196 (2009) |
[27] | T. Balakumar, M. Medraj, Calphad 29, 24 (2005) |
[28] | M. Paliwal, I.H. Jung, Calphad 34, 51 (2010) |
[29] | P. Liang, T. Tarfa, J.A. Robinson, S. Wagner, P. Ochin, M.G. Harmelin, H.J. Seifert, H.L. Lukas, F. Aldinger, Thermochim.Acta 314, 87 (1998) |
[30] | S. Thompson, S.L. Cockcroft, M.A. Wells,Mater. Sci. Technol. 20, 194(2004) |
[31] | M. Ohno, D. Mirković, R. Schmid-Fetzer,Acta Mater. 54, 3883(2006) |
[32] | W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W.A. Oates, Calphad 33, 328 (2009) |
[33] | W.J. Boettinger, U.R. Kattner, K. W. Moon, J.H. Perepezko,DTA and heat-flux DSC measurements of alloy melting and freezing, (NIST, U.S. Government Printing Office, 2006), p 22 |
[34] | L. Arnberg, G. Chai, L. Backerud, Mater. Sci.Eng.A 173, 101 (1993) |
[35] | D. Emadi, L.V. Whiting, S. Nafisi, R. Ghomashchi, J. Thermal Anal.Calorim. 81, 235(2005) |
[1] | Hamid Ashrafi, Morteza Shamanian, Rahmatollah Emadi, Ehsan Ghassemali. Void Formation and Plastic Deformation Mechanism of a Cold-Rolled Dual-Phase Steel During Tension [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 299-306. |
[2] | Xin He, Jianbo Zhang, Yuanyi Peng, Jingan Li, Jian Ding, Chang Liu, Xingchuan Xia, Xueguang Chen, Yongchang Liu. Microstructure Evolution of Primary γ′ Phase in Ni3Al-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1709-1726. |
[3] | Guodong Hu, Pei Wang, Dianzhong Li, Yiyi Li. High-temperature Tensile Behavior in Coarse-grained and Fine-grained Nb-containing 25Cr-20Ni Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1455-1465. |
[4] | Pei Li, Danhui Hou, En-Hou Han, Rongshi Chen, Zhiwei Shan. Solidification of Mg-Zn-Zr Alloys: Grain Growth Restriction, Dendrite Coherency and Grain Size [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1477-1486. |
[5] | Wen Wang, Peng Han, Jie Yuan, Pai Peng, Qiang Liu, Fei Qiang, Ke Qiao, Kuai-She Wang. Enhanced Mechanical Properties of Pure Zirconium via Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 147-153. |
[6] | N. Thangapandian, S. Balasivanandha Prabu , K. A. Padmanabhan. Effect of Temperature on Grain Size in AA6063 Aluminum Alloy Subjected to Repetitive Corrugation and Straightening [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 835-844. |
[7] | Hong-Bo B,Li-Min Dong,Zhi-Qiang Zhang,Dong-Sheng Xu,Rui Yang. Effects of Zr Content on the Microstructures and Tensile Properties of Ti-3Al-8V-6Cr-4Mo-xZr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8): 722-726. |
[8] | Yadav Aniruddh Bahadur, Pandey Amritanshu, Jit S.. Effects of Annealing Temperature on the Structural, Optical, and Electrical Properties of ZnO Thin Films Grown on n-Si〈100〉 Substrates by the Sol–Gel Spin Coating Method [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 682-688. |
[9] | Chunlin QIU, Liangyun LAN, Dewen ZHAO, Xiuhua GAO and Linxiu DU. Microstructural Evolution and Toughness in the HAZ of Submerged Arc Welded Low Welding Crack Susceptibility Steel [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(1): 49-55. |
[10] | Zhongwei CHEN,Cuiying MA,Jing ZHAO . Eutectic nucleation in Al-7 wt pct Si-Mg casting alloys [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(5): 340-346. |
[11] | Gang WANG, Dechang ZENG, Zhongwu LIU. Nucleation barrier height in undercooled metallic melts [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(4): 256-264. |
[12] | Renguo GUAN, Zhanyong ZHAO,Runze CHAO, Hongqian HUANG,Chunming LIU. Heat transfer and grain refining mechanism during melt treatment by cooling sloping plate [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(4): 320-328. |
[13] | Keijiro HIRAGA, Byung-Nam KIM, Koji MORITA, Hidehiro YOSHIDA, Yoshio SAKKA, Masaaki TABUCHI. High-strain-rate superplasticity in oxide ceramics: a trial of microstructural design based on creep-cavitation mechanisms [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(3): 195-204. |
[14] | Rong MA, Yafeng YANG, Qingzhi YAN, Ying YANG, Xinggang LI, Changchun GE. Effect of alloying on the properties of 9Cr low activation martensitic steels [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(6): 451-460. |
[15] | . Rheocasting of A356 alloy by Low Superheat Pouring with a Shearing Field [J]. Acta Metallurgica Sinica (English Letters), 2006, 19(5): 328-334 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||