Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (6): 834-844.DOI: 10.1007/s40195-020-01164-3
Previous Articles Next Articles
Iniobong P. Etim1,2, Wen Zhang1,2, Yi Zhang1,2, Lili Tan2(), Ke Yang1,2
Received:
2020-07-18
Revised:
2020-07-31
Accepted:
2020-09-10
Online:
2021-06-10
Published:
2021-05-31
Contact:
Lili Tan
About author:
Lili Tan. lltan@imr.ac.cnIniobong P. Etim, Wen Zhang, Yi Zhang, Lili Tan, Ke Yang. Microstructural Evolution and Biodegradation Response of Mg-2Zn-0.5Nd Alloy During Tensile and Compressive Deformation[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 834-844.
Add to citation manager EndNote|Ris|BibTeX
Zn | Nd | Fe | Co | Ni | Cu | Mg |
---|---|---|---|---|---|---|
1.84 | 0.52 | 0.005 | < 0.003 | < 0.003 | < 0.003 | Bal. |
Table 1 Chemical composition of as-extruded Mg-2Zn-0.5Nd alloy (wt%)
Zn | Nd | Fe | Co | Ni | Cu | Mg |
---|---|---|---|---|---|---|
1.84 | 0.52 | 0.005 | < 0.003 | < 0.003 | < 0.003 | Bal. |
Fig. 2 Initial microstructure and texture of the as-extruded Mg-2Zn-0.5Nd alloy. The scanned surface is perpendicular to the ED. a Inverse pole figure (IPF) map with stereographic triangle reflecting the orientation relationship between the sample surfaces and crystallographic planes of the grains before deformation, b pole figure before deformation, c grain size distribution, d inverse pole figure before deformation with contour line levels 1, 2, 3
Deformation | Yield stress (MPa) | Fracture stress (MPa) | Elongation (%) |
---|---|---|---|
Tensile | 63 ± 2 | 143 ± 3 | 32 ± 2 |
Compressive | 95 ± 3 | 317 ± 5 | 35 ± 3 |
Table 2 Mechanical properties of the Mg-2Zn-0.5Nd alloy
Deformation | Yield stress (MPa) | Fracture stress (MPa) | Elongation (%) |
---|---|---|---|
Tensile | 63 ± 2 | 143 ± 3 | 32 ± 2 |
Compressive | 95 ± 3 | 317 ± 5 | 35 ± 3 |
Fig. 4 Inverse pole figure (IPF) maps of Mg-2Zn-0.5Nd alloy after a 5%, b 15%, c 25% compressive strains along the ED and d 5%, e 15%, f 25% tensile strains along ED; grain size distributions after g 5%, h 15%, i 25% compressive strains and j 5%, k 15%, l 25% tensile strains
Fig. 5 Grain and twin boundary maps of Mg-2Zn-0.5Nd alloy after a 25% compressive deformation and b 25% tensile deformation, c twin variant labels, d misorientation angle distributions, e volume fraction of twinned regions at different plastic strains
Plastic strain | Tensile deformation | Compressive deformation | ||||
---|---|---|---|---|---|---|
Ii %(10-10) | Ii %(0002) | Ii %(10-11) | Ii %(10-10) | Ii %(0002) | Ii %(10-11) | |
As-extruded | 16.3 | 19.9 | 63.8 | 16.3 | 19.9 | 63.8 |
5% | 20.7 | 14.1 | 65.2 | 14.5 | 22.8 | 62.7 |
15% | 26.2 | 6.7 | 67.1 | 12.7 | 27.6 | 59.7 |
25% | 28.1 | 3.6 | 68.3 | 7.8 | 40.4 | 51.8 |
Table 3 Relative intensities of XRD results in three directions under uniaxial tension and compression of Mg-2Zn-0.5Nd alloy at room temperature
Plastic strain | Tensile deformation | Compressive deformation | ||||
---|---|---|---|---|---|---|
Ii %(10-10) | Ii %(0002) | Ii %(10-11) | Ii %(10-10) | Ii %(0002) | Ii %(10-11) | |
As-extruded | 16.3 | 19.9 | 63.8 | 16.3 | 19.9 | 63.8 |
5% | 20.7 | 14.1 | 65.2 | 14.5 | 22.8 | 62.7 |
15% | 26.2 | 6.7 | 67.1 | 12.7 | 27.6 | 59.7 |
25% | 28.1 | 3.6 | 68.3 | 7.8 | 40.4 | 51.8 |
Fig. 7 {0002} pole figures of Mg-2Zn-0.5Nd alloy after a-c 5%, 15% and 25% compressive strains along ED, d-f 5%, 15% and 25% tensile strains along ED. Inverse pole figure evolution during g-i 5%, 15% and 25% compression strains, j-l 5%, 15% and 25% tensile strains. Contour line levels are 1, 2, 3, 4…
Sample | Ecorr (VSCE) | icorr (µA cm-2) | $\beta_{\text{c }}$ (V decay-1) |
---|---|---|---|
A0 | - 1.61 ± 0.04 | 2.71 ± 0.32 | - 0.155 ± 0.010 |
T5 | - 1.57 ± 0.03 | 2.85 ± 0.38 | - 0.145 ± 0.012 |
T15 | - 1.54 ± 0.02 | 10.21 ± 0.72 | - 0.219 ± 0.020 |
T25 | - 1.48 ± 0.04 | 18.34 ± 1.21 | - 0.237 ± 0.023 |
C5 | - 1.58 ± 0.03 | 3.28 ± 0.42 | - 0.194 ± 0.014 |
C15 | - 1.55 ± 0.02 | 13.17 ± 0.74 | - 0.217 ± 0.021 |
C25 | - 1.51 ± 0.03 | 45.32 ± 2.52 | - 0.190 ± 0.019 |
Table 4 Corrosion potential (Ecorr), corrosion current density (icorr), and cathodic polarization $\beta_{{\rm c}}$ slope of Mg-2Zn-0.5Nd alloy extrapolated from the polarization curves in Fig. 8a
Sample | Ecorr (VSCE) | icorr (µA cm-2) | $\beta_{\text{c }}$ (V decay-1) |
---|---|---|---|
A0 | - 1.61 ± 0.04 | 2.71 ± 0.32 | - 0.155 ± 0.010 |
T5 | - 1.57 ± 0.03 | 2.85 ± 0.38 | - 0.145 ± 0.012 |
T15 | - 1.54 ± 0.02 | 10.21 ± 0.72 | - 0.219 ± 0.020 |
T25 | - 1.48 ± 0.04 | 18.34 ± 1.21 | - 0.237 ± 0.023 |
C5 | - 1.58 ± 0.03 | 3.28 ± 0.42 | - 0.194 ± 0.014 |
C15 | - 1.55 ± 0.02 | 13.17 ± 0.74 | - 0.217 ± 0.021 |
C25 | - 1.51 ± 0.03 | 45.32 ± 2.52 | - 0.190 ± 0.019 |
Fig. 10 Weight loss of Mg-2Zn-0.5Nd alloy with different tensile and compressive deformations after immersion tests in Hank’s solution at 37 °C for 7 d, 14 d, and 28 d (total number of samples, N?=?105)
Fig. 11 Corroded surface morphologies of Mg-2Zn-0.5Nd alloy: a, b as-extruded, c 25% tensile deformation, and d 25% compressive deformation after 14-day immersion in Hank’s solution at 37 °C
Zone | O | Mg | P | Cl | Ca | Zn | Nd |
---|---|---|---|---|---|---|---|
A | 46.80 | 32.99 | 11.93 | 1.92 | 5.02 | 0.98 | 0.36 |
B | 34.11 | 14.34 | 23.79 | 1.80 | 23.45 | 1.38 | 1.13 |
Table 5 EDS results of the framed zone A and B in Fig. 11a (wt%)
Zone | O | Mg | P | Cl | Ca | Zn | Nd |
---|---|---|---|---|---|---|---|
A | 46.80 | 32.99 | 11.93 | 1.92 | 5.02 | 0.98 | 0.36 |
B | 34.11 | 14.34 | 23.79 | 1.80 | 23.45 | 1.38 | 1.13 |
[1] |
L. Tan, X. Yu, P. Wan, K. Yang J. Mater. Sci. Technol. 29, 503 (2013)
DOI URL |
[2] |
Y.S. Jeong, W.J. Kim, Corros. Sci. 82, 392 (2014)
DOI URL |
[3] |
J. Zhang, N. Kong, Y. Shi, J. Niu, L. Mao, H. Li, M. Xiong, G. Yuan, Corros. Sci. 85, 477 (2014)
DOI URL |
[4] |
J. Hofstetter, E. Martinelli, A.M. Weinberg, M. Becker, B. Mingler, P.J. Uggowitzer, J.F. Löffler, Corros. Sci. 91, 29 (2015)
DOI URL |
[5] | Y. Shao, R.C. Zeng, S.Q. Li, L.Y. Cui, Y.H. Zou, S.K. Guan, Y.F. Zheng, Acta Metal. Sin. -Engl. Lett. 33, 615 (2020) |
[6] |
M.S. Song, R.C. Zeng, Y.F. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, X.B. Chen J. Mater. Sci. Technol. 35, 535 (2019)
DOI URL |
[7] | R.C. Zeng, L.Y. Cui, W. Ke, Acta Metal. Sin. 54, 1215 (2018). (in Chinese) |
[8] |
X.B. Zhang, Z.X. Ba, Q. Wang, Y.J. Wu, Z.Z. Wang, Q. Wang, Corros. Sci. 88, 1 (2014)
DOI URL |
[9] | G. Mani, M.D. Feldman, D. Patel, C.M. Agrawal, Biomaterials 28, 1689 (2007) |
[10] |
M. Niinomi, M. Nakai, J. Hieda, Acta Biomate. 8, 3888 (2012)
DOI URL |
[11] |
S.X. Zhang, X.N. Zhang, C.L. Zhao, J.A. Li, Y. Song, C.Y. Xie, H.R. Tao, Y. Zhang, Y.H. He, Y. Jiang, Y.J. Bian, Acta Biomate. 6, 626 (2010)
DOI URL |
[12] |
X. Zhang, G. Yuan, Z. Wang, Mater. Lett. 74, 128 (2012)
DOI URL |
[13] | E. Zhang, L. Yang, Mater. Sci. Eng., A 497, 111 (2008) |
[14] | E. Zhang, W. He, H. Du, K. Yang, Mater. Sci. Eng., A 488, 102 (2008) |
[15] | H.S. Brar, J. Wong, M.V. Manuel J. Mech. Behav. Biomed. Mate. 7, 87 (2012) |
[16] |
Z.Y. Ding, L.Y. Cui, R.C. Zeng, Y.B. Zhao, S.K. Guan, D.K. Xu, C.G. Lin J. Mater. Sci. Technol. 34, 1550 (2018)
DOI URL |
[17] | H. Liu, H. Huang, J.P. Sun, C. Wang, J. Bai, A.B. Ma, X.H. Chen, Acta Metal. Sin. -Engl. Lett. 32, 269 (2019) |
[18] | F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, Biomaterials 26, 3557 (2005) |
[19] | B. Smola, L. Joska, V. Březina, I. Stulíková, F. Hnilica, Mater. Sci. Eng., C 32, 659 (2012) |
[20] |
L. Mao, G.Y. Yuan, S.H. Wang, J.L. Niu, G.H. Wu, W.J. Ding, Mater. Lett. 88, 1 (2012)
DOI URL |
[21] |
Y.J. Chen, Z.G. Xu, C. Smith, J. Sankar, Acta Biomate. 10, 4561 (2014)
DOI URL |
[22] |
J.M. Seitz, R. Eifler, J. Stahl, M. Kietzmann, F.W. Bach, Acta Biomate. 8, 3852 (2012)
DOI URL |
[23] | R.C. Zeng, Z.Z. Yin, X.B. Chen, D.K. Xu, in Magnesium Alloys, ed. By T. Tański (Intechopen, London, 2018). https://doi.org/10.5772/intechopen.80083 |
[24] |
D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, D.H. Yang, J.F. Fan, Corros. Sci. 53, 362 (2011)
DOI URL |
[25] |
P.L. Bonora, M. Andrei, A. Eliezer, E.M. Gutman, Corros. Sci. 44, 729 (2002)
DOI URL |
[26] |
D. Song, A. Ma, J. Jiang, P. Lin, D. Yang, J. Fan, Corros. Sci. 52, 481 (2010)
DOI URL |
[27] | T. Zhang, Y. Shao, G. Meng, Z. Cui, F. Wang, Corros. Sci. 53, 1960 (2011) |
[28] |
Y. Zheng, Y. Li, J. Chen, Z. Zou, Corros. Sci. 90, 445 (2015)
DOI URL |
[29] |
J.A. Grogan, B.J. O’Brien, S.B. Leen, P.E. McHugh, Acta Biomater. 7, 3523 (2011)
DOI PMID |
[30] |
X. Li, C. Chu, Y. Wei, C. Qi, J. Bai, C. Guo, F. Xue, P. Lin, P.K. Chu, Acta Biomate. 48, 468 (2017)
DOI URL |
[31] |
F. Tuchscheerer, L. Krüger, J. Mater. Sci. 50, 5104 (2015)
DOI URL |
[32] | J.A. Grogan, D. Gastaldi, M. Castelletti, F. Migliavacca, G. Dubini, P.E. McHugh, Rev. Sci. Instrum. 84, 2088 (2013) |
[33] | D. Liu, S. Hu, X. Yin, J. Liu, Z. Jia, Q. Li, Mater. Sci. Eng., C 84, 263 (2018) |
[34] |
S. Bagherifard, D.J. Hickey, S. Fintová, F. Pastorek, I. Fernandez-Pariente, M. Bandini, T.J. Webster, M. Guagliano, Acta Biomate. 66, 93 (2018)
DOI URL |
[35] |
K. Törne, A. Örnberg, J. Weissenrieder, Acta Biomate. 48, 541 (2017)
DOI URL |
[36] | Y. Zong, G. Yuan, X. Zhang, L. Mao, J. Niu, W. Ding, Mater. Sci. Eng., B 177, 395 (2012) |
[37] | I.P. Etim, W. Zhang, L. Tan, K. Yang, Bioact. Mate. 5, 133 (2020) |
[38] |
N.N. Aung, W. Zhou, Corros. Sci. 52, 589 (2010)
DOI URL |
[39] |
N. Liu, J. Wang, L. Wang, Y. Wu, L. Wang, Corros. Sci. 51, 1328 (2009)
DOI URL |
[40] |
J.D. Robson, N. Stanford, M.R. Barnett, Acta Mate. 59, 1945 (2011)
DOI URL |
[41] |
J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, S.R. Agnew, Acta Mate. 55, 2101 (2007)
DOI URL |
[42] |
M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, S.R. Kalidindi, Acta Mate. 58, 6230 (2010)
DOI URL |
[43] |
S.R. Agnew, Ö. Duygulu, Int. J. Plast 21, 1161 (2005)
DOI URL |
[44] |
J. Koike, R. Ohyama, Acta Mate. 53, 1963 (2005)
DOI URL |
[45] | J. Wang, L. Xu, R. Wu, J. Feng, J. Zhang, L. Hou, M. Zhang, Acta Metal. Sin. -Engl. Lett. 33, 490 (2020) |
[46] |
G.L. Song, Z. Xu, Electrochim. Acta 55, 4148 (2010)
DOI URL |
[47] |
M. Andrei, A. Eliezer, P.L. Bonora, E.M. Gutman, Mater. Corros. 53, 455 (2002)
DOI URL |
[48] |
G.B. Hamu, D. Eliezer, L. Wagner, J. Alloys Compd. 468, 222 (2009)
DOI URL |
[1] | Chunni Jia, Gang Shen, Wenxiong Chen, Baojia Hu, Chengwu Zheng, Dianzhong Li. Mesoscopic Analysis of Deformation Heterogeneity and Recrystallization Microstructures of a Dual-Phase Steel Using a Coupled Simulation Approach [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 777-788. |
[2] | Ying Han, Jiaqi Sun, Jiapeng Sun, Guoqing Zu, Weiwei Zhu, Xu Ran. High-Temperature Creep Behavior and Microstructural Evolution of a Cu-Nb Co-Alloyed Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 789-801. |
[3] | Chao Hai, Xuequn Cheng, Cuiwei Du, Xiaogang Li. Role of Martensite Structural Characteristics on Corrosion Features in Ni-Advanced Dual-Phase Low-Alloy Steels [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 802-812. |
[4] | Chongfeng Sun, Shengqi Xi, Xiaofeng Dang, Jianping Li, Yongchun Guo, Zhong Yang, Yaping Bai. Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 825-833. |
[5] | Liwen Tan, Zhongwei Wang, Yanlong Ma. Tribocorrosion Behavior and Degradation Mechanism of 316L Stainless Steel in Typical Corrosive Media [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 813-824. |
[6] | Guang-Lei Wang, Jin-Lai Liu, Ji-De Liu, Yi-Zhou Zhou, Xu-Dong Sun, Hai-Feng Zhang, Xiao-Feng Sun. Effect of Orientation on Stress-Rupture Property and Related Deformation Microstructure of a Ni-Base Re-containing Single-Crystal Superalloy at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 719-728. |
[7] | Xiangpeng Gong, Shifang Luo, Shiyong Li, Cuilan Wu. Dislocation-Induced Precipitation and Its Strengthening of Al-Cu-Li-Mg Alloys with High Mg [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 597-605. |
[8] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. |
[9] | Long Xin, Yongming Han, Ligong Ling, Yonghao Lu, Tetsuo Shoji. Surface Oxidation and Subsurface Microstructure Evolution of Alloy 690TT Induced by Partial Slip Fretting Corrosion in High-Temperature Pure Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 543-554. |
[10] | Mingxiao Guo, Junrong Tang, Tianzhen Gu, Can Peng, Qiaoxia Li, Chen Pan, Zhenyao Wang. Corrosion Behavior of 316L Stainless Steels Exposed to Salt Lake Atmosphere of Western China for 8 years [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 555-564. |
[11] | Hongchi Ma, Baijie Zhao, Yi Fan, Kui Xiao, Jinbin Zhao, Xuequn Cheng, Xiaogang Li. Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 565-578. |
[12] | Ji-Jin Xu, Shuai Wang, Ze Chai, Chun Yu, Jun-Mei Chen, Hao Lu. Comparison of the Stress Corrosion Cracking Behaviour of AISI 304 Pipes Welded by TIG and LBW [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 579-589. |
[13] | Pengfei Wu, Shengan Wu, Dan Sun, Yougen Tang, Haiyan Wang. A Review of Al Alloy Anodes for Al-Air Batteries in Neutral and Alkaline Aqueous Electrolytes [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(3): 309-320. |
[14] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. |
[15] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||