Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (11): 1543-1555.DOI: 10.1007/s40195-020-01083-3
Previous Articles Next Articles
Hong-Qiang Zhang1, Hai-Lin Bai2, Qiang Jia1, Wei Guo1(), Lei Liu1, Gui-Sheng Zou1(
)
Received:
2020-02-20
Revised:
2020-03-26
Online:
2020-11-10
Published:
2020-11-17
Contact:
Wei Guo,Gui-Sheng Zou
Hong-Qiang Zhang, Hai-Lin Bai, Qiang Jia, Wei Guo, Lei Liu, Gui-Sheng Zou. High Electrical and Thermal Conductivity of Nano-Ag Paste for Power Electronic Applications[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1543-1555.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 a Thermal decomposition of nano-Ag paste (heating rate 10 °C/min, air atmosphere); b FTIR spectra of the nano-Ag paste sintered at different temperatures
Silver particle paste | Sintering parameters | Resistivity (Ω cm) |
---|---|---|
Heraeus’ mAgic paste | 280 °C/- | 8.00E-05 |
DOWA silver nano-paste | 180 °C/90 min | 5.00E-05 |
NBE’s nano-paste | 280 °C/- | 3.80E-05 |
Harima’s NH4000 paste | 250 °C/60 min | 2.50E-06 |
Harima’s NPS-HB paste | 150 °C/90 min | 1.40E-05 |
ALPHA Argomax? paste | 190-300 °C/- | 2.50E-05 |
This study | 275 °C/15 min | 2.31E-05 |
300 °C/15 min | 8.35E-06 |
Table 1 Comparison of resistivity of nano-Ag paste reported by different companies
Silver particle paste | Sintering parameters | Resistivity (Ω cm) |
---|---|---|
Heraeus’ mAgic paste | 280 °C/- | 8.00E-05 |
DOWA silver nano-paste | 180 °C/90 min | 5.00E-05 |
NBE’s nano-paste | 280 °C/- | 3.80E-05 |
Harima’s NH4000 paste | 250 °C/60 min | 2.50E-06 |
Harima’s NPS-HB paste | 150 °C/90 min | 1.40E-05 |
ALPHA Argomax? paste | 190-300 °C/- | 2.50E-05 |
This study | 275 °C/15 min | 2.31E-05 |
300 °C/15 min | 8.35E-06 |
Calculation method | Equation | Parameters |
---|---|---|
Wiedemann-Franz (W-F) calculation | λ = LTσ | L: proportionality constant 2.44 × 10-8 W Ω K-2 |
σ: electrical conductivity | ||
T: temperature | ||
Thermal diffusivity calculation | λ = αCρ | α: thermal diffusivity C: specific heat |
ρ: sample bulk density | ||
Porosity calculation | λ = λ0(1-ξ)3/2 | ξ: the porosity λ0: the thermal conductivity of solid material |
Table 2 Thermal conductivity calculation method of the sintered Ag layer [34, 36, 37]
Calculation method | Equation | Parameters |
---|---|---|
Wiedemann-Franz (W-F) calculation | λ = LTσ | L: proportionality constant 2.44 × 10-8 W Ω K-2 |
σ: electrical conductivity | ||
T: temperature | ||
Thermal diffusivity calculation | λ = αCρ | α: thermal diffusivity C: specific heat |
ρ: sample bulk density | ||
Porosity calculation | λ = λ0(1-ξ)3/2 | ξ: the porosity λ0: the thermal conductivity of solid material |
Fig. 10 Cross-sectional microstructures of SiC chip attachment: a overview of chip attachment; b SiC chip/sintered Ag layer interface; c sintered Ag layer; d sintered Ag layer/ENIG surface
Fig. 12 TEM images of the sintered Ag layer/ENIG surface interface: a low-magnification image; b-d high-magnification image; e high-resolution TEM image of Ag/Ni(P) interface; f high-resolution TEM image of sintered Ag layer/Ag-Au interdiffusion layer interface
Fig. 14 Fracture morphology of sintered a-b Si chip attachment and c-d SiC chip attachment (sintering temperature 300 °C, sintering time 15 min, pressure 3 MPa)
Chip attachment | Sintering parameter | Shear strength(MPa) | Refs. |
---|---|---|---|
Die-to-DBC (Ni/Ag surface) | 300 °C/20 MPa | 20 | [ |
Cu-to-Cu joint (Ag surface) | 300 °C/0 MPa | 22 | [ |
Cu-to-Cu joint (Ag surface) | 300 °C/5 MPa | 50 | |
SiC-to-AlN joint (Cu surface) | 300 °C/30 min | 41 | [ |
SiC-to-Si3N4 joint (Ag surface) | 300 °C/0.4 MPa/60 min | 21 | [ |
Cu-to-Cu disk joint | 300 °C/5 MPa/5 min | 36 | [ |
Cu-to-Cu disk joints | 300 °C/2.5 MPa | 15.5 | [ |
Cu-to-Cu disk joints | 300 °C/10 MPa | 55 | [ |
Bare Cu joint | 300 °C/60 min/0 MPa | 20.7 | [ |
SiC-to-DBC joint (Au surface) | 300 °C/10 min | 15 | [ |
Si-to-DBC joint (Ni/Au surface) | 300 °C/10 MPa/15 min | 45 | This work |
Table 3 Shear strength of chip attachment sintered by Ag paste at 300 °C
Chip attachment | Sintering parameter | Shear strength(MPa) | Refs. |
---|---|---|---|
Die-to-DBC (Ni/Ag surface) | 300 °C/20 MPa | 20 | [ |
Cu-to-Cu joint (Ag surface) | 300 °C/0 MPa | 22 | [ |
Cu-to-Cu joint (Ag surface) | 300 °C/5 MPa | 50 | |
SiC-to-AlN joint (Cu surface) | 300 °C/30 min | 41 | [ |
SiC-to-Si3N4 joint (Ag surface) | 300 °C/0.4 MPa/60 min | 21 | [ |
Cu-to-Cu disk joint | 300 °C/5 MPa/5 min | 36 | [ |
Cu-to-Cu disk joints | 300 °C/2.5 MPa | 15.5 | [ |
Cu-to-Cu disk joints | 300 °C/10 MPa | 55 | [ |
Bare Cu joint | 300 °C/60 min/0 MPa | 20.7 | [ |
SiC-to-DBC joint (Au surface) | 300 °C/10 min | 15 | [ |
Si-to-DBC joint (Ni/Au surface) | 300 °C/10 MPa/15 min | 45 | This work |
[1] |
F. Yu, J. Cui, Z. Zhou, K. Fang, R.W. Johnson, M.C. Hamilton, IEEE Trans. Power Electron. 32, 7083(2017)
DOI URL |
[2] |
J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, J. Rebollo, IEEE Trans. Power Electron., 29, 2155(2014)
DOI URL |
[3] |
H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans. B 41, 824 (2010)
DOI URL |
[4] | F. Roccaforte, P. Fiorenza, G. Greco, R. Lo Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Microelectron. Eng. 187, 66(2018) |
[5] | W. Sabbah, F. Arabi, O. Avino-Salvado, C. Buttay, L. Théolier, H. Morel, Microelectron. Reliab. 76, 444(2017) |
[6] | M. Brincker, S. Söhl, R. Eisele, V.N. Popok, Microelectron. Reliab. 76, 378(2017) |
[7] | S. Mallampati, L. Yin, D. Shaddock, H. Schoeller, J. Cho, J. Electron. Packag. 140, 1(2018) |
[8] |
H. Zhang, J. Minter, N.C. Lee, J. Electron. Mater. 48, 201(2019)
DOI URL |
[9] |
C. Chen, Y. Gao, Z.Q. Liu, K. Suganuma, Scr. Mater. 179, 36(2020)
DOI URL |
[10] |
S.A. Paknejad, G. Dumas, G. West, G. Lewis, S.H. Mannan, J. Alloys Compd. 617, 994(2014)
DOI URL |
[11] |
C. Chen, K. Suganuma, Mater. Des. 162, 311(2019)
DOI URL |
[12] | R. Zhang, J. Mater. Chem. A 20, 2018(2010) |
[13] |
J.R. Greer, R.A. Street, Acta Mater. 55, 6345(2007)
DOI URL |
[14] |
P. Hu, W. O’Neil, Q. Hu, Appl. Surf. Sci. 257, 680(2010)
DOI URL |
[15] |
D.E. Xu, J.B. Kim, M.D. Hook, J.P. Jung, M. Mayer, J. Alloys Compd. 731, 504(2018)
DOI URL |
[16] |
J. Li, X. Li, L. Wang, Y.H. Mei, G.Q. Lu, Mater. Des. 140, 64(2018)
DOI URL |
[17] | S. Fu, Y. Mei, X. Li, C. Ma, G. Lu, I.E.E.E. Trans, Power Electron. 32, 6049(2017) |
[18] |
J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Scr. Mater. 66, 582(2012)
DOI URL |
[19] |
W.H. Li, P.S. Lin, C.N. Chen, T.Y. Dong, C.H. Tsai, W.T. Kung, J.M. Song, Y.T. Chiu, P.F. Yang, Mater. Sci. Eng. A 613, 372 (2014)
DOI URL |
[20] |
K.S. Siow, J. Electron. Mater. 43, 947(2014)
DOI URL |
[21] | T. Ishizaki, R. Watanabe, J. Mater. Chem. 22, 25189(2012) |
[22] |
H. Yu, L. Li, Y. Zhang, Scr. Mater. 66, 931(2012)
DOI URL |
[23] |
H. Zhang, W. Wang, H. Bai, G. Zou, L. Liu, P. Peng, W. Guo, J. Alloys Compd. 774, 487(2019)
DOI URL |
[24] |
K.S. Siow, J. Alloys Compd. 514, 6(2012)
DOI URL |
[25] | D. Wakuda, K. Kim, K. Suganuma, I.E.E.E. Trans, Compon. Packag. Technol. 33, 437(2010) |
[26] |
K.S. Tan, K.Y. Cheong, Mater. Des. 64, 166(2014)
DOI URL |
[27] |
Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, J. Electron. Mater. 39, 1283(2010)
DOI URL |
[28] |
K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Microelectron. Reliab. 52, 375(2012)
DOI URL |
[29] |
D.H. Petersen, O. Hansen, R. Lin, P.F. Nielsen, J. Appl. Phys. 104, 013710(2008)
DOI URL |
[30] |
Y. Zhang, J. Zhang, J. Colloid Interface Sci. 283, 352(2005)
DOI URL PMID |
[31] |
S. Majumdar, B. Adhikari, Sens. Actuat. B 114, 747 (2006)
DOI URL |
[32] |
B.J. Baliga, I.E.E.E. Trans, Electron Devices 43, 1717 (1996)
DOI URL |
[33] | L. Coppola, D. Huff, F. Wang, R. Burgos, D. Boroyevich, Survey on high-temperature packaging materials for SiC-based power electronics modules. Paper presented in 2007 IEEE power electronics specialists conference, Orlando, USA, 17-21 June 2007 |
[34] |
S. Wang, M.Y. Li, H.J. Ji, C.Q. Wang, Scr. Mater. 69, 789(2013)
DOI URL |
[35] | G.Q. Lu, J.N. Calata, G. Lei, X. Chen, Low-temperature and pressureless sintering technology for high-performance and hightemperature interconnection of semiconductor devices. Paper presented at international conference on thermal, mechanical and multi-physics simulation experiments in microelectronics and micro-systems, London, UK, 16-18 April 2007 |
[36] |
M.I. Aivazov, I.A. Domashnev, Sov. Powder Metall. Met. Ceram. 7, 708(1968)
DOI URL |
[37] | J. Kahler, N. Heuck, A. Wagner, A. Stranz, E. Peiner, A. Waag, I.E.E.E. Trans, Compon. Packag. Technol. 2, 1587(2012) |
[38] |
B.S. Lee, J.W. Yoon, Met. Mater. Int. 23, 958(2017)
DOI URL |
[39] |
M.S. Kim, H. Nishikawa, Scr. Mater. 92, 43(2014)
DOI URL |
[40] |
H. Zhang, H. Bai, P. Peng, W. Guo, G. Zou, L. Liu, Weld. World 63, 1055 (2019)
DOI URL |
[41] | Y. Liu, H. Zhang, L. Wang, X. Fan, G. Zhang, F. Sun, I.E.E.E. Trans, Device Mater.Reliab. 18, 240(2018) |
[42] |
S. Nishimoto, S.A. Moeini, T. Ohashi, Y. Nagatomo, P. McCluskey, Microelectron. Reliab. 87, 232(2018)
DOI URL |
[43] |
S. Sakamoto, S. Nagao, K. Suganuma, J. Mater. Sci.: Mater. Electron. 24, 2593(2013)
DOI URL |
[44] |
E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385(2005)
DOI URL |
[45] | Y. Yasuda, E. Ide, T. Morita, Jpn. J. Appl.Phys. 48, 125004(2009) |
[46] |
Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, K. Suganuma, J. Alloys Compd. 780, 435(2019)
DOI URL |
[47] | J.G. Bai, G. Lu, I.E.E.E. Trans, Device Mater.Reliab. 6, 436(2006) |
[48] | Y. Tan, X. Li, X. Chen, G. Lu, Y. Mei, I.E.E.E. Trans, Compon. Packag. Technol. 8, 202(2018) |
[49] |
W. Liu, Y. Wang, Z. Zheng, C. Wang, R. An, Y. Tian, L. Kong, R. Xu, J. Mater. Sci.: Mater. Electron. 30, 7787(2019)
DOI URL |
[50] |
C. Chen, Z. Zhang, Q. Wang, B. Zhang, Y. Gao, T. Sasamurad, Y. Odad, N. Mac, K. Suganuma, J. Alloys Compd. 828, 154397(2020)
DOI URL |
[1] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[2] | Fengqiang Xiao, Dongpo Wang, Wenbin Hu, Lei Cui, Zhiming Gao, Lanju Zhou. Effect of Interlayers on Microstructure and Properties of 2205/Q235B Duplex Stainless Steel Clad Plate [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 679-692. |
[3] | Xin-Yu Ren, Hai-Shui Ren, Yong-Wang Kang, Hua-Ping Xiong, Chong Pei, Bo Chen, Yao-Yong Cheng, A. I. Ustinov. Solid-State Diffusion Bonding of NbSS/Nb5Si3 Composite Using Ni/Al and Ti/Al Nanolayers [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1142-1150. |
[4] | Jinglin Liu, Shiyu Niu, Rong Ren, Shude Ji, Lei Wang, Zan Lv. Improving Joint Morphologies and Tensile Strength of Al/Mg Dissimilar Alloys Friction Stir Lap Welding by Changing Zn Interlayer Thickness [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1385-1395. |
[5] | Zhang Xin, Shi Xiaohong, Wang Jie, Li Hejun, Li Kezhi, Ren Yancai. Effect of Bonding Temperature on the Microstructures and Strengths of C/C Composite/GH3044 Alloy Joints by Partial Transient Liquid-Phase (PTLP) Bonding with Multiple Interlayers [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 663-669. |
[6] | Zongan LUO, Guanglei WANG, Guangming XIE, Lipeng WANG, Kun ZHAO. Interfacial Microstructure and Properties of a Vacuum Hot Roll-bonded Titanium-Stainless Steel Clad Plate with a Niobium Interlayer [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(6): 754-760. |
[7] | Yuhua LIU, Jiandong HU, Yaping ZHANG, Zuoxing GUO, Yue YANG. Effect of parameters on interface of the brazed ZrO2 ceramic and Ti-6Al-4V joint using Ti-based amorphous filler [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(2): 89-94. |
[8] | WANG Chengguo. PENG Qifeng. LIU Junhai, SUN XitaiShandong Polytechnic University. Jinan, ChinaZHU Jing. CAI QigongCentral Iron and Steel Research Institute. Ministry of Metallurgical Industry. Beijing, China Manuscript received 14 April, 1994. TENSILE-SHEAR STRENGTH AND BREAKING MORPHOLOGY FOR VIBRATION DAMPING LAMINATED STEEL SHEET [J]. Acta Metallurgica Sinica (English Letters), 1994, 7(2): 114-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||