Please wait a minute...
Acta Metallurgica Sinica (English Letters)  2019, Vol. 32 Issue (12): 1470-1482    DOI: 10.1007/s40195-019-00963-7
Orginal Article Current Issue | Archive | Adv Search |
Corrosion and Cavitation Erosion Behaviours of Cast Nickel Aluminium Bronze in 3.5% NaCl Solution with Different Sulphide Concentrations
Qi-Ning Song1(), Nan Xu1, Yao Tong1, Chen-Ming Huang1, Shou-Yu Sun1, Chen-Bo Xu1, Ye-Feng Bao1, Yong-Feng Jiang1, Yan-Xin Qiao2, Zhi-Yuan Zhu2, Zheng-Bin Wang3
1 College of Mechanical and Electrical Engineering, Hohai University, 200 Jinling North Road, Changzhou 213022, China
2 College of Materials Science and Engineering, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212003, China
3 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, China
Download:  HTML  PDF(4621KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of sulphide (Na2S) concentration (SC) on the corrosion and cavitation erosion behaviours of a cast nickel aluminium bronze (NAB) in 3.5% NaCl solution is investigated in this study. The results show that when the SC exceeds 50 ppm, the hydrogen evolution reaction dominates the cathodic process, and a limiting current region appears in the anodic branch of the polarisation curve due to the formation of a copper sulphide film, which is a diffusion-controlled process. After long-term immersion, the increased mass loss rate of NAB with the sulphide additions of 20 and 50 ppm is attributed to the less protective films, which contains a mixture of copper oxides and sulphides. Moreover, NAB undergoes severe localised corrosion (selective phase corrosion, SPC) at the β′ phases and eutectoid microstructure α + κIII. By comparison, NAB undergoes general corrosion and a copper sulphide film is formed in 100 and 200 ppm sulphide solutions. Cavitation erosion greatly increases the corrosion rate of NAB in all solutions and causes a negative potential shift in 3.5% NaCl solution due to the film destruction. However, a positive potential shift occurs in the solutions with SC higher than 50 ppm due to the accelerated mass transfer of the cathodic process. The cavitation erosion mass loss rate of NAB increases with the increase of SC. The occurrence of severe SPC decreases the phase boundary cohesion and causes brittle fracture under the cavitation impact. The corrosion-enhanced erosion is the most predominant factor for the cavitation erosion damage when the SC exceeds 50 ppm.

Key words:  Nickel aluminium bronze      Sulphide      Corrosion      Cavitation erosion      Synergy     
Received:  27 May 2019     

Cite this article: 

Qi-Ning Song, Nan Xu, Yao Tong, Chen-Ming Huang, Shou-Yu Sun, Chen-Bo Xu, Ye-Feng Bao, Yong-Feng Jiang, Yan-Xin Qiao, Zhi-Yuan Zhu, Zheng-Bin Wang. Corrosion and Cavitation Erosion Behaviours of Cast Nickel Aluminium Bronze in 3.5% NaCl Solution with Different Sulphide Concentrations. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1470-1482.

URL: 

https://www.amse.org.cn/EN/10.1007/s40195-019-00963-7     OR     https://www.amse.org.cn/EN/Y2019/V32/I12/1470

Fig. 1  Schematic diagram of the ultrasonically vibrating equipment for cavitation erosion test. 1: water inlet; 2: cooling system; 3: Pt electrode; 4: reference electrode; 5: amplitude transformer; 6: transducer; 7: horn; 8: sample; 9: water outlet; 10: ultrasonic generator
Fig. 2  Optical microstructure of the cast NAB
Fig. 3  Polarisation curves of NAB in 3.5% NaCl solutions with different SCs
Fig. 4  a Mass loss, b film weight results of NAB after immersion for different periods in 3.5% NaCl solutions with different SCs
Fig. 5  Surface morphologies of NAB after immersion for 7 days in 3.5% NaCl solutions with SCs of a, b 0 ppm, c, d 20 ppm, e, f 50 ppm
Fig. 6  Surface morphologies of NAB after immersion for 7 days in 3.5% NaCl solutions with SCs of a, b 100 ppm, c, d 200 ppm
Solutions (SC) Areas O Al Ni Fe Mn Cu Cl S
0 ppm 1 1.84 8.44 13.53 10.28 0.57 64.56 0.48 -
2 3.60 9.48 9.10 8.61 1.44 66.51 1.27 -
3 12.40 14.01 4.42 3.04 0.30 63.40 2.43 -
20 ppm 4 5.03 2.31 7.56 3.38 0.10 72.42 4.82 4.37
5 2.36 2.27 4.64 4.49 0.77 81.39 0.81 3.26
50 ppm 6 11.89 1.42 1.86 1.42 0.57 67.84 - 15.00
7 7.59 - 1.68 3.35 0.77 71.85 - 13.94
8 8.47 2.47 3.80 4.53 1.86 69.59 - 9.28
100 ppm 9 - - - 1.08 0.58 78.12 - 20.22
10 - - - 1.10 0.89 76.66 - 21.35
200 ppm 11 - - 0.59 1.25 1.27 77.65 - 19.24
12 - - - 0.87 - 80.30 - 18.83
Table 1  Chemical compositions of the corrosion products located on different areas in Figs. 5 and 6 (wt%)
Fig. 7  XRD patterns of NAB after immersion for 7 days in 3.5% NaCl solutions with different SCs
Fig. 8  Cross-sectional morphologies of NAB after immersion for 7 days in 3.5% NaCl solutions with SCs of a, b 0 ppm, c 20 ppm, d 50 ppm, e 100 ppm, f 200 ppm
Fig. 9  Cumulative mass loss results of NAB after cavitation erosion in 3.5% NaCl solutions with different SCs for 5 h
Fig. 10  OCP results of NAB under alternate quiescence and cavitation erosion conditions in 3.5% NaCl solutions with different SCs
Fig. 11  Schematic diagrams for OCP and current density evolution under alternate conditions of quiescence and cavitation erosion: a with, b without a protective film on the material surface under quiescence condition
Fig. 12  Polarisation curves of NAB under quiescence and cavitation erosion conditions in 3.5% NaCl solutions with different SCs
Conditions 3.5% NaCl solution + x ppm Na2S
0 20 50 100 200
Quiescence
I (A cm-2) 6.8175?×?10-6 3.1426?×?10-6 2.7630?×?10-6 2.5147?×?10-6 7.0212?×?10-6
Ecorr (mV) -?277 -?341 -?950 -?963 -?962
Cavitation
I (A cm-2) 3.0678?×?10-5 2.6561?×?10-4 5.5525?×?10-4 8.1464?×?10-4 8.6688?×?10-4
Ecorr (mV) -?290 -?364 -?746 -?790 -?837
Table 2  Electrochemical parameters obtained from the polarisation curves in Fig. 12 for NAB in 3.5% NaCl solutions with different SCs
Solutions (SC) Mass loss rate (mg cm-2 h-1) Percentages (%)
T E C ?E ?C S E/T C/T S/T ?E/T ?C/T
0 ppm 1.4722 0.9111 0.0163 0.4879 0.0570 0.5448 61.89 1.11 37.01 33.14 3.87
20 ppm 1.9611 0.9111 0.0075 0.4154 0.6266 1.0420 46.46 0.38 53.16 21.21 31.95
50 ppm 3.9611 0.9111 0.0066 1.7226 1.3189 3.0415 23.00 0.17 76.83 43.54 33.30
100 ppm 5.2278 0.9111 0.0060 2.3713 1.9387 4.3100 17.43 0.11 82.46 45.37 37.08
200 ppm 8.0778 0.9111 0.0168 5.0994 2.0527 7.1521 11.28 0.21 88.51 63.10 25.41
Table 3  Cavitation erosion-corrosion synergy results for NAB in 3.5% NaCl solutions with different SCs
Fig. 13  Surface morphologies of NAB after cavitation erosion for 5 h in a distilled water and 3.5% NaCl solutions with SCs of b 0 ppm, c 20 ppm, d 50 ppm, e 100 ppm, f 200 ppm
[1] J.A. Wharton, R.C. Barik, G. Kear, R.J.K. Wood, K.R. Stokes, F.C. Walsh, Corros. Sci. 47, 3336(2005)
[2] A. Schussler, H.E. Exner, Corros. Sci. 34, 1793(1993)
[3] A.H. Tuthill, Mater. Perform. 26, 12(1987)
[4] B.G. Ateya, E.A. Ashour, S.M. Sayed, J. Electrochem. Soc. 141, 71(1994)
[5] A.L. Ma, S.L. Jiang, Y.G. Zheng, W. Ke, Corros. Sci. 91, 245(2015)
[6] W.A. Badawy, M. El-Rabiee, N.H. Helal, H. Nady, Electrochim . Acta 71, 50 (2012)
[7] G. ?ekularac, I. Milo?ev, Corros. Sci. 144, 54(2018)
[8] A.S. Hamdy, M.A. Shoeib, Y. Barakat, Electrochim . Acta 52, 7068 (2007)
[9] J.L. Tang, X. Yang, Y.Y. Wang, H. Wang, Y. Xiao, M. Apreutesei, Z. Nie, B. Normand, Metals 9, 294 (2019)
[10] X. Yang, C. Du, H. Wan, Z. Liu, X. Li, Appl. Surf. Sci. 458, 198(2018)
[11] K. Rahmouni, M. Keddam, A. Srhiri, H. Takenouti, Corros. Sci. 47, 3249(2005)
[12] N.K. Awad, E.A. Ashour, N.K. Allam, Appl. Surf. Sci. 346, 158(2015)
[13] S.J. Yuan, S.O. Pehkonen, Corros. Sci. 49, 1276(2017)
[14] L.E. Eiselstein, B.C. Syrett, S.S. Wing, R.D. Caligiuri, Corros. Sci. 23, 223(1983)
[15] S.M. Sayed, E.A. Ashour, G.I. Youssef, Chem. Phys. 78, 825(2003)
[16] Q.N. Song, N. Xu, Y.F. Bao, Y.F. Jiang, W. Gu, Y.G. Zheng, Y.X. Qiao, Acta Metall. Sin. (Engl. Lett.) 30, 712(2017)
[17] Y.Y. Song, H.W. Shi, J. Wang, F.C. Liu, E.H. Han, W. Ke, G.X. Jie, J. Wang, H.J. Huang, Acta Metall. Sin. (Engl. Lett.) 30, 1201(2017)
[18] M. Hazra, K.P. Balan, Eng. Fail. Anal. 70, 141(2016)
[19] S.Z. Li, X.X. Jiang, H.Y. Bi, S. Li, Wear 225-229, 1025(1999)
[20] E.A. Ashour, L.A. Khorshed, G.I. Youssef, H.M. Zakria, T.A. Khalifa, Mater. Sci. Appl. 5, 10(2014)
[21] N. Taniguchi, M. Kawasaki, J. Nucl. Mater. 379, 154(2008)
[22] Q. Luo, Q. Zhang, Z.B. Qin, Z. Wu, B. Shen, L. Liu, W.B. Hu, J. Alloys Compd. 747, 861(2018)
[23] Y.X. Qiao, S. Wang, B. Liu, Y.G. Zheng, H.B. Li, Z.H. Jiang, Acta Metall. Sin. 52, 233(2016)
[24] C.T. Kwok, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 290, 145 (2000)
[25] C.T. Kwok, H.C. Man, L.K. Leung, Wear 211, 84 (1997)
[26] ASTM G32-10, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus (2010)
[27] F. Hasan, G.W. Lorimer, N. Eidley, Metall. Trans. A 13A, 1337 (1982)
[28] E.A. Culpan, G. Rose, J. Mater. Sci. 13, 1647(1978)
[29] D.C. Kong, C.F. Dong, X.Q. Ni, A.N. Xu, C. He, K. Xiao, X.G. Li, Mater. Corros. 68, 1070(2017)
[30] J. Chen, D.W. Shoesmith, J. Electrochem. Soc. 157, C338(2010)
[31] J.A. Wharton, K.R. Stokes, Electrochim . Acta 53, 2463 (2008)
[32] G. Kear, B.D. Barker, F.C. Walsh, Corros. Sci. 46, 109(2004)
[33] T. Martino, J. Smith, J. Chen, Z. Qin, J.J. No?l, D.W. Shoesmith, J. Electrochem. Soc. 166, C9(2019)
[34] J. Chen, Z. Qin, L. Wu, J.J. No?l, D.W. Shoesmith, Corros. Sci. 87, 233(2014)
[35] J. Chen, Z. Qin, D.W. Shoesmith, Electrochim . Acta 56, 7854 (2011)
[36] Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Corrosion 71, 606 (2015)
[37] T. Martino, R. Partovi-Nia, J. Chen, Z. Qin, D.W. Shoesmith, Electrochim . Acta 127, 439 (2014)
[38] B.C. Syrett, Corros. Sci. 21, 187(1981)
[39] Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Corros. Sci. 92, 95(2015)
[40] S. Neodo, D. Carugo, J.A. Wharton, K.R. Stokes, J. Electroanal. Chem. 695, 38(2013)
[41] E.A. Culpan, G. Rose, Br. Corros. J. 14, 160(1979)
[42] Y.G. Zheng, S.Z. Luo, W. Ke, Wear 262, 1308 (2007)
[43] Y.G. Zheng, S.Z. Luo, W. Ke, Tribol. Int. 41, 1181(2008)
[44] Y.X. Qiao, Z.H. Tian, X. Cai, J. Chen, Y.X. Wang, Q.N. Song, H.B. Li, Tribol. Lett. 67, 1(2019)
[45] Q.N. Song, Y.G. Zheng, S.L. Jiang, D.R. Ni, Z.Y. Ma, Corrosion 69, 1111 (2013)
[1] Mingxiao Guo, Qi Yin, Miaoran Liu, Chen Pan, Zhenyao Wang. Corrosion Behavior of 304 Stainless Steel Exposed to a Simulated Salt Lake Atmosphere[J]. 金属学报英文版, 2020, 33(6): 857-870.
[2] Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel[J]. 金属学报英文版, 2020, 33(6): 789-798.
[3] Li-Mei Liu, Yu-Xiang Lai, Chun-Hui Liu, Jiang-Hua Chen. Optimized Combinatorial Properties of an AlMgSi(Cu) Alloy Achieved by a Mechanical-Thermal Combinatorial Process[J]. 金属学报英文版, 2020, 33(5): 751-758.
[4] Haifei Zhou, Zhouhai Qian, Mengcheng Zhou, Xuebing Liu, Yong Li, Xinfang Zhang. Synergistic Balance of Strength and Corrosion Resistance in Al-Mg-Er Alloys[J]. 金属学报英文版, 2020, 33(5): 659-670.
[5] Jing-Jing Dong, Lin Fan, Hai-Bing Zhang, Li-Kun Xu, Li-Li Xue. Electrochemical Performance of Passive Film Formed on Ti-Al-Nb-Zr Alloy in Simulated Deep Sea Environments[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 595-604.
[6] Longlong Zhang, Yatong Zhang, Jinshan Zhang, Rui Zhao, Jiaxin Zhang, Chunxiang Xu. Effect of Alloyed Mo on Mechanical Properties, Biocorrosion and Cytocompatibility of As-Cast Mg-Zn-Y-Mn Alloys[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 500-513.
[7] Xin-Hui Gu, Jun-Xi Zhang, Xiao-Lei Fan, Lai-Chang Zhang. Corrosion Behavior of Selective Laser Melted AlSi10Mg Alloy in NaCl Solution and Its Dependence on Heat Treatment[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 327-337.
[8] Hao-Yi Niu, Fang-Fang Cao, Kun-Kun Deng, Kai-Bo Nie, Jin-Wen Kang, Hong-Wei Wang. Microstructure and Corrosion Behavior of the As-Extruded Mg-4Zn-2Gd-0.5Ca Alloy[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 362-374.
[9] Zhen-Ping Shi, Zheng-Bin Wang, Ji-Qiang Wang, Yan-Xin Qiao, Huai-Ning Chen, Tian-Ying Xiong, Yu-Gui Zheng. Effect of Ni Interlayer on Cavitation Erosion Resistance of NiTi Cladding by Tungsten Inert Gas (TIG) Surfacing Process[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 415-424.
[10] Yan Dai, Xian-Hua Chen, Tao Yan, Ai-Tao Tang, Di Zhao, Zhu Luo, Chun-Quan Liu, Ren-Ju Cheng, Fu-Sheng Pan. Improved Corrosion Resistance in AZ61 Magnesium Alloys Induced by Impurity Reduction[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 225-232.
[11] Yixun Yang, Qingchuan Wang, Jun Li, Lili Tan, Ke Yang. Enhancing General Corrosion Resistance of Biomedical High Nitrogen Nickel-Free Stainless Steel by Nitric Acid Passivation[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 307-312.
[12] Yan-Long Ma, Hui-Bin Xu, Zhao-Yuan Liang, Lei Liu. Corrosion Resistance of Friction Stir Welded Al-Cu-Li Alloy AA2099-T8[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 127-134.
[13] Hua Zhang, Chang-Yu Zhao, Qi-Long Guo, Rui-Sheng Yang, Li-Yuan Liu, San-Bao Lin. Microstructure and Corrosion Behavior of Friction Stir Welded Al Alloy Coated by In Situ Shot-Peening-Assisted Cold Spray[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 172-182.
[14] Chao Xiang, Zhi-Ming Zhang, Hua-Meng Fu, En-Hou Han, Jian-Qiu Wang, Hai-Feng Zhang, Guo-Dong Hu. Microstructure, Mechanical Properties, and Corrosion Behavior of MoNbFeCrV, MoNbFeCrTi, and MoNbFeVTi High-Entropy Alloys[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1053-1064.
[15] Yu-Fen Zhang, Sha-Wei Tang, Tie-Gui Lin, Guang-Yi Liu, Jin Hu. Corrosion Properties of Calcium Stearate-Based Hydrophobic Coatings on Anodized Magnesium Alloy[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1111-1121.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About AMSE
Privacy Statement
Terms & Conditions
Editorial Office: Acta Metallurgica Sinica(English Letters), 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-024-83978879
E-mail:ams@imr.ac.cn

Copyright © 2016 AMSE, All Rights Reserved.