Please wait a minute...
Acta Metallurgica Sinica (English Letters)  2019, Vol. 32 Issue (12): 1490-1500    DOI: 10.1007/s40195-019-00918-y
Orginal Article Current Issue | Archive | Adv Search |
Oxidation Performance and Interdiffusion Behavior of a Pt-Modified Aluminide Coating with Pre-deposition of Ni
He Liu1,2, Shuai Li1,2, Cheng-Yang Jiang3, Chun-Tang Yu1,2, Ze-Bin Bao1(), Sheng-Long Zhu1, Fu-Hui Wang3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Shenyang National Laboratory for Materials Science,Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(3357KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To refrain the interdiffusion of elements while holding good oxidation resistance, a (Ni,Pt)Al/Ni composite coating was prepared by sequential treatments of electroplating Ni and Pt and successive gaseous aluminization. In comparison with normal (Ni,Pt)Al coating, high-temperature performance of the composite coating was evaluated in isothermal oxidation test at 1100 °C. Both the two coatings exhibited good resistance against high-temperature oxidation, but the interdiffusion of elements between composite coating and single-crystal (SC) superalloy substrate was greatly relieved, in which the thickness of secondary reaction zone (SRZ) and the amount of precipitated topologically close-packed phase in the SC alloy matrix were significantly decreased. Mechanisms responsible for delaying rate of coating degradation and SRZ growth/propagation are discussed.

Key words:  Aluminide coating      Oxidation      Interdiffusion      Microstructure     
Received:  07 March 2019     

Cite this article: 

He Liu, Shuai Li, Cheng-Yang Jiang, Chun-Tang Yu, Ze-Bin Bao, Sheng-Long Zhu, Fu-Hui Wang. Oxidation Performance and Interdiffusion Behavior of a Pt-Modified Aluminide Coating with Pre-deposition of Ni. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1490-1500.

URL: 

https://www.amse.org.cn/EN/10.1007/s40195-019-00918-y     OR     https://www.amse.org.cn/EN/Y2019/V32/I12/1490

Parameter Value
NiSO4·6H20 150-200 g L-1
NaCl 8-10 g L-1
H2BO3 20-30 g L-1
Na2SO4 50-80 g L-1
C12H25NaSO4 0.1 g L-1
pH value 5
Temperature 55 °C
Current density 0.5-1 A dm-2
Table 1  Parameters for Ni pre-deposition by electroplating technique
Fig. 1  XRD patterns of β-(Ni,Pt)Al coating specimens with and without Ni pre-deposition
Fig. 2  Surface and cross-sectional morphologies of as-received (Ni,Pt)Al (a, c) and (Ni,Pt)Al/Ni coatings (b, d)
Al Ni Pt Cr Co
(Ni,Pt)Al 41.58 46.24 5.34 2.26 4.58
(Ni,Pt)Al/Ni 42.91 51.56 5.52
Table 2  Coating compositions measured at the region 5 μm to the surface of the two coatings in as-received state (at.%)
Fig. 3  Mass gain (Δw) (a) and square of mass gain (b) of (Ni,Pt)Al and (Ni,Pt)Al/Ni coating specimens during isothermal oxidation test at 1100 °C
Fig. 4  XRD patterns for (Ni,Pt)Al and (Ni,Pt)Al/Ni coatings after isothermal oxidation test at 1100 °C for 1000 h
Fig. 5  Cross-sectional morphologies of (Ni,Pt)Al (a) and (Ni,Pt)Al/Ni (b) coating specimens after isothermal oxidation test at 1100 °C for 1000 h
Al Ni Pt Cr Co
(Ni,Pt)Al 26.61 60.45 4.99 3.36 4.6
(Ni,Pt)Al/Ni 33.6 54.59 5.41 3.08 3.33
Table 3  Coating compositions measured at the region 5 μm to the surface of the two coatings after isothermal oxidation at 1100 °C for 1000 h (at.%)
Fig. 6  Interdiffusion zone evolution of normal β-(Ni,Pt)Al coating specimen during isothermal oxidation test at 1100 °C for a 0 h, b 20 h, c 500 h
Fig. 7  Interdiffusion zone evolution of (Ni,Pt)Al/Ni composite coating during isothermal oxidation test at 1100 °C for a 0 h, b 20 h, c 500 h
Fig. 8  Elemental mappings of (Ni,Pt)Al coating specimen after isothermal oxidation at 1100°C for 500 h
Fig. 9  Elemental mappings of (Ni,Pt)Al/Ni coating specimen after isothermal oxidation test at 1100°C for 500 h
Fig. 10  Evolution of SRZ thickness for (Ni,Pt)Al/Ni and (Ni,Pt)Al coating specimens during isothermal oxidation test
Fig. 11  Schematic illustration showing evolution of SRZ developed below normal (Ni,Pt)Al coating
Fig. 12  Schematic illustration showing evolution of SRZ developed below (Ni,Pt)Al/Ni coating
[1] M.J. Pomeroy, Mater. Des. 26, 223(2005)
[2] J.H. Sun, H.C. Jang, E. Chang, Surf. Coat. Technol. 64, 195(1994)
[3] R.G. Wing, I.R. Mcgill, Plat. Eng. 53, 15(1981)
[4] S. Darzens, D.R. Mumm, D.R. Clarke, A.G. Evans, Metall. Mater. Trans. A 34, 511 (2003)
[5] S.K. Gong, L. Deng, F.S. Liu, H.B. Xu, Acta Metall. Sin. (Engl. Lett.) 9, 519(1996)
[6] E.J. Felten, F.S. Pettit, Oxid. Met. 10, 189(1976)
[7] J.G. Fountain, F.A. Golightly, F.H. Stott, G.C. Wood, Oxid. Met. 10, 341(1976)
[8] D.K. Das, V. Singh, S.V. Joshi, Oxid. Met. 57, 245(2001)
[9] G.H. Meier, F.S. Pettit, Surf. Coat. Technol. 39, 1(1989)
[10] H.M. Tawancy, N.M. Abbas, T.N. Rhys-Jones, Surf. Coat. Technol. 49, 1(1991)
[11] H.M. Tawancy, N. Sridhar, B.S. Tawabini, N.M. Abbas, T.N. Rhys-Jones, J. Mater. Sci. 27, 6463(1992)
[12] H.M. Tawancy, N. Sridhar, N.M. Abbas, D. Rickerby, Scr. Metall. Mater. 33, 1431(1995)
[13] J.A. Haynes, B.A. Pint, Y. Zhang, I.G. Wright, Oxid. Met. 58, 513(2002)
[14] Y. Zhang, W.Y. Lee, J.A. Haynes, I.G. Wright, B.A. Pint, K.M. Cooley, P.K. Liaw, Metall. Mater. Trans. A 30, 2679 (1999)
[15] C. Leyens, B.A. Pint, I.G. Wright, Surf. Coat. Technol. 133, 15(2000)
[16] V.K. Tolpygo, D.R. Clarke, Scr. Mater. 57, 563(2007)
[17] V.K. Tolpygo, K.S. Murphy, D.R. Clarke, Acta Mater. 56, 489(2008)
[18] M.W. Chen, M.L. Glynn, R.T. Ott, T.C. Hufnagel, K.J. Hemker, Acta Mater. 51, 4279(2003)
[19] J. Angenete, K. Stiller, E. Bakchinova, Surf. Coat. Technol. 176, 272(2004)
[20] D. Wang, H. Peng, S.K. Gong, H.B. Guo, Corros. Sci. 78, 304(2014)
[21] B. Bai, H.B. Guo, H. Peng, L.Q. Peng, S.K. Gong, Corros. Sci. 53, 2721(2011)
[22] D.K. Das, K.S. Murphy, S.W. Ma, T. Pollock, Metall. Mater. Trans. A 39, 1647 (2008)
[23] Y. Matsuoka, K. Chikugo, T. Suzuki, Y. Matsunaga, S. Taniguchi, Mater. Sci. Forum 512, 111 (2006)
[24] F. Lang, T. Narita, Intermetallics 15, 599 (2007)
[25] F. Wu, H. Murakami, A. Suzuki, Surf. Coat. Technol. 168, 62(2003)
[26] Y. Wang, H.B. Guo, H. Peng, L.Q. Peng, S.K. Gong, Intermetallics 19, 191 (2011)
[27] Z.M. Bai, D.Q. Li, H. Peng, J. Wang, H.B. Guo, S.K. Gong, Prog. Nat. Sci. Mater. Int. 146, 37(2012)
[28] L.J. Zhu, S.L. Zhu, F.H. Wang, Corros. Sci. 60, 265(2012)
[29] J. Müller, M. Schierling, E. Zimmermann, D. Neuschütz, Surf. Coat. Technol. 120, 16(1999)
[30] T.Q. Liang, H.B. Guo, H. Peng, S.K. Gong, J. Alloys Compd. 509, 8542(2011)
[31] Y.F. Yang, C.Y. Jiang, Z.B. Bao, S.L. Zhu, F.H. Wang, Corros. Sci. 106, 43(2016)
[32] Y. Matsuoka, Y. Aoki, K. Matsumoto, A. Satou, T. Suzuki, K. Chikugo, K. Murakami, Superalloys 12(637), 637-642 (2004)
[33] J.D. Nystrom, T.M. Pollock, W.H. Murphy, A. Garg, Metall. Mater. Trans. A 28, 2443 (1997)
[34] Q.Y. Shi, X.F. Ding, M.L. Wang, Y.R. Zheng, J.P. He, S. Tin, Q. Feng, Metall. Mater. Trans. A 45, 1833 (2013)
[35] V.A. Esin, V. Maurel, P. Breton, A. K?ster, S. Selezneff, Acta Mater. 105, 505(2016)
[36] F. Pedraza, A.D. Kennedy, J. Kopecek, P. Moretto, Surf. Coat. Technol. 200, 4032(2006)
[37] T.Q. Liang, H.B. Guo, H. Peng, S.K. Gong, Surf. Coat. Technol. 205, 4374(2011)
[38] W. Huang, Y.A. Chang, Mater. Sci. Eng. A 259, 110 (1999)
[39] M. Reid, M.J. Pomeroy, J.S. Robinson, J. Mater. Process. Technol. 153, 660(2004)
[40] D.B. Zhang, S.K. Gong, H.B. Xu, Y.F. Han, Acta Metall. Sin. (Engl. Lett.) 15, 45(2002)
[41] C.M.F. Rae, R.C. Reed, Acta Mater. 49, 4113(2001)
[42] J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 465, 100 (2007)
[1] Boxiang Wang, Zhenhua Wang, Juntang Yuan, Bin Yu. Effects of (Ti, W)C Addition on the Microstructure and Mechanical Properties of Ultrafine WC-Co Tool Materials Prepared by Spark Plasma Sintering[J]. 金属学报英文版, 2020, 33(6): 892-902.
[2] Dongping Zhan, Guoxing Qiu, Changsheng Li, Yongkun Yang, Zhouhua Jiang, Huishu Zhang. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging[J]. 金属学报英文版, 2020, 33(6): 881-891.
[3] Jinyong Gao, Lijun Yang, Lei Cui, Peng Lu, Jun Yang, Yanjun Gao. Improving the Weld Formation and Mechanical Properties of the AA-5A06 Friction Pull Plug Welds by Axial Force Control[J]. 金属学报英文版, 2020, 33(6): 828-838.
[4] Xin Cai, Xiao-Qiang Hu, Lei-Gang Zheng, Dian-Zhong Li. Hot Deformation Behavior and Processing Maps of 0.3C-15Cr-1Mo-0.5N High Nitrogen Martensitic Stainless Steel[J]. 金属学报英文版, 2020, 33(5): 693-704.
[5] Jian Han, Zhixiong Zhu, Gang Wei, Xingxu Jiang, Qian Wang, Yangchuan Cai, Zhengyi Jiang. Microstructure and Mechanical Properties of Nb- and Nb + Ti-Stabilised 18Cr-2Mo Ferritic Stainless Steels[J]. 金属学报英文版, 2020, 33(5): 716-730.
[6] Mohamad Ebrahimnia, Yujiang Xie, Changtai Chi. Effect of laser power and deposition environment on the microstructure and properties of direct laser metal-deposited 12CrNi2 steel[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 528-538.
[7] Fu-Yue Wang, Xiang-Jie Wang, Wei Sun, Fang Yu, Jian-Zhong Cui. Low Frequency Electromagnetic Casting of 2195 Aluminum-Lithium Alloy and Its Effects on Microstructure and Mechanical Properties[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 338-350.
[8] Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436.
[9] Yi-Fei Li, Li Wang, Gong Zhang, Dong-ng Qi, Kui Du, Lang-Hong Lou. Anisotropic Stress Rupture Properties of a 3rd-Generation Nickel-Based Single-Crystal Superalloy at 1100 °C/150 MPa[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 446-458.
[10] Ying Ma, Fu-Yin Han, Cheng Liu, Ming-Zhe Li. Microstructure, Texture Evolution, and Mechanical Properties of ECAP-Processed ZAT522 Magnesium Alloy[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 233-242.
[11] Nan Xu, Ruo-Nan Feng, Wen-Feng Guo, Qi-Ning Song, Ye-Feng Bao. Effect of Zener-Hollomon Parameter on Microstructure and Mechanical Properties of Copper Subjected to Friction Stir Welding[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 319-326.
[12] Guo-Qing Wang, Yan-Hua Zhao, Ying-Ying Tang. Research Progress of Bobbin Tool Friction Stir Welding of Aluminum Alloys: A Review[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 13-29.
[13] Bin He, Lei Cui, Dong-Po Wang, Hui-Jun Li, Chen-Xi Liu. Microstructure and Mechanical Properties of RAFM-316L Dissimilar Joints by Friction Stir Welding with Different Butt Joining Modes[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 135-146.
[14] Gaoqiang Chen, Shuai Zhang, Yucan Zhu, Chengle Yang, Qingyu Shi. Thermo-mechanical Analysis of Friction Stir Welding: A Review on Recent Advances[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 3-12.
[15] Xiao-Song Feng, Song-Bin Li, Li-Na Tang, Hui-Min Wang. Refill Friction Stir Spot Welding of Similar and Dissimilar Alloys: A Review[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 30-42.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About AMSE
Privacy Statement
Terms & Conditions
Editorial Office: Acta Metallurgica Sinica(English Letters), 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-024-83978879
E-mail:ams@imr.ac.cn

Copyright © 2016 AMSE, All Rights Reserved.