Please wait a minute...
Acta Metallurgica Sinica (English Letters)  2019, Vol. 32 Issue (12): 1449-1458    DOI: 10.1007/s40195-019-00917-z
Orginal Article Current Issue | Archive | Adv Search |
Effects of Dissimilar Alumina Particulates on Microstructure and Properties of Cold-Sprayed Alumina/A380 Composite Coatings
Xiang Qiu1,2, Naeem ul Haq Tariq1,3,4, Lu Qi1,2, Jun-Rong Tang1,2, Xin-Yu Cui1, Hao Du1, Ji-Qiang Wang1(), Tian-Ying Xiong1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China
4 Department of Metallurgy and Materials Engineering, Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
Download:  HTML  PDF(2961KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this study, alumina/A380 composite coatings were fabricated by cold spray. The influence of alumina particulates’ morphology (spherical and irregular) and content on the deposition behavior of the coatings (including surface roughness, surface residual stress, cross-sectional microstructure and microhardness) was investigated. Results revealed that the spherical alumina mainly shows micro-tamping effect during deposition, which result in remarkable low surface roughness and porosity of the coatings. In addition, very low deposition efficiency and good interfacial bonding between the coating and the substrate were achieved. For irregular alumina particles, the embedding of ceramic particulates in the coating was dominant during deposition process, resulting in high retention in the final deposit. However, it showed limited influence on porosity, surface roughness and interfacial bonding of the deposit. The coatings containing irregular alumina particulates exhibited much higher microhardness than those containing spherical alumina due to the higher load-bearing capacity of deposited alumina.

Key words:  Cold spray      Alumina particles      Microstructure      Micro-tamping effect      Embedding effect     
Received:  21 February 2019     

Cite this article: 

Xiang Qiu, Naeem ul Haq Tariq, Lu Qi, Jun-Rong Tang, Xin-Yu Cui, Hao Du, Ji-Qiang Wang, Tian-Ying Xiong. Effects of Dissimilar Alumina Particulates on Microstructure and Properties of Cold-Sprayed Alumina/A380 Composite Coatings. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1449-1458.

URL: 

https://www.amse.org.cn/EN/10.1007/s40195-019-00917-z     OR     https://www.amse.org.cn/EN/Y2019/V32/I12/1449

Fig. 1  Residual stress measurement: a the detectors of the stress analyzer; b data analysis of detector 1; c data analysis of detector 2; d elliptical fitting of data from b and c
Fig. 2  Morphologies of a A380 powders; b S-Al2O3 powders; c I-Al2O3 powders; d particle size distributions
Fig. 3  a Laser confocal scanning microscope graphs of surface morphology; b average surface roughness of the coatings
Fig. 4  Representative cross-sectional SEM micrographs of a pure A380 deposits; b S-Coatings and c I-Coatings at different magnifications
Fig. 5  Porosity of the pure A380 and composite coatings
Fig. 6  Volume fraction of alumina deposited in the coatings as compared to the feedstock powder blend
Fig. 7  Surface residual stresses of the coatings
Fig. 8  Representative SEM images of the indentation of a pure A380 deposits; b S-Coatings and c I-Coatings; d the microhardness values of coatings
Fig. 9  Schematic diagrams of deposition behavior for S- and I-alumina coatings
[1] T. Peat, A. Galloway, A. Toumpis, P. McNutt, N. Iqbal, Appl. Surf. Sci. 396, 1635(2017)
[2] M.R. Rokni, C.A. Widener, O.C. Ozdemir, G.A. Crawford, Sur. Coat. Technol. 309, 641(2017)
[3] H. Assadi, F. G?rtner, T. Stoltenhoff, H. Kreye, Acta Mater. 51, 4379(2003)
[4] R. Jenkins, S. Yin, B. Aldwell, M. Meyer, R. Lupoi, J. Mater. Sci. Technol. 35, 427(2019)
[5] H. Assadi, H. Kreye, F. G?rtner, T. Klassen, Acta Mater. 116, 382(2016)
[6] Y. Tao, T. Xiong, C. Sun, H. Jin, H. Du, T. Li, Appl. Surf. Sci. 256, 261(2009)
[7] M.R. Rokni, S.R. Nutt, C.A. Widener, V.K. Champagne, R.H. Hrabe, J. Therm.Spray Technol. 26, 1308(2017)
[8] W. Li, K. Yang, S. Yin, X. Yang, Y. Xu, R. Lupoi, J. Mater. Sci. Technol. 34, 440(2018)
[9] K. Yang, W. Li, X. Guo, X. Yang, Y. Xu, J. Mater. Sci. Technol. 34, 1570(2018)
[10] S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H.L. Liao, W.Y. Li, R. Lupoi, Addit. Manuf. 21, 628(2018)
[11] B. Al-Mangour, P. Vo, R. Mongrain, E. Irissou, S. Yue, J. Therm.Spray Technol. 23, 641(2014)
[12] M.R. Rokni, C.A. Widener, V.K. Champagne, G.A. Crawford, S.R. Nutt, Surf. Coat. Technol. 310, 278(2017)
[13] B. Dikici, H. Yilmazer, I. Ozdemir, M. Isik, J. Therm.Spray Technol. 25, 704(2016)
[14] W.Y. Li, C.J. Li, H. Liao, C. Coddet, Appl. Surf. Sci. 253, 5967(2007)
[15] K. Yang, W. Li, C. Huang, X. Yang, Y. Xu, J. Mater. Sci. Technol. 34, 2167 (2018)
[16] W. Han, X.M. Meng, J. Zhao, J.B. Zhang, Acta Metall. Sin. (Engl. Lett.) 24, 249(2011)
[17] R. Huang, M. Sone, W. Ma, H. Fukanuma, Surf. Coat. Technol. 261, 278(2015)
[18] J.H. Cho, Y.M. Jin, D.Y. Park, H.J. Kim, I.H. Oh, K.A. Lee, Met. Mater. Int. 17, 157(2011)
[19] X. Qiu, J.Q. Wang, N.U.H. Tariq, L. Gyansah, J.X. Zhang, T.Y. Xiong, J. Therm. Spray Technol. 26, 1898(2017)
[20] W.Y. Li, C.L. Yang, H.L. Liao, Mater. Des. 32, 388(2011)
[21] Y.Y. Wang, B. Normand, N. Mary, M. Yu, H.L. Liao, Surf. Coat. Technol. 315, 314(2017)
[22] K. Spencer, D.M. Fabijanic, M.X. Zhang, Surf. Coat. Technol. 206, 3275(2012)
[23] E. Irissou, J.G. Legoux, B. Arsenault, C. Moreau, J. Therm.Spray Technol. 16, 661(2007)
[24] W.Y. Li, G. Zhang, H.L. Liao, C. Coddet, J. Mater. Process. Technol. 202, 508(2008)
[25] M. Yu, X.K. Suo, W.Y. Li, Y.Y. Wang, H.L. Liao, Appl. Surf. Sci. 289, 188(2014)
[26] X.T. Luo, Y.K. Wei, Y. Wang, C.J. Li, Mater. Des. 85, 527(2015)
[27] E. Sansoucy, P. Marcoux, L. Ajdelsztajn, B. Jodoin, Surf. Coat. Technol. 202, 3988(2008)
[28] A. Shkodkin, A. Kashirin, O. Klyuev, T. Buzdygar, J. Therm.Spray Technol. 15, 382(2006)
[29] M. Yandouzi, L. Ajdelsztajn, B. Jodoin, Surf. Coat. Technol. 202, 3866(2008)
[30] K.I. Triantou, D.I. Pantelis, V. Guipont, M. Jeandin, Wear 336, 96 (2015)
[31] T. Suhonen, T. Varis, S. Dosta, M. Torrell, J.M. Guilemany, Acta Mater. 61, 6329(2013)
[32] X.L. Zhou, X.K. Wu, J.G. Wang, J.S. Zhang, Acta Metall. Sin. (Engl. Lett.) 24, 43(2011)
[33] X.L. Zhou, X.Y. Su, H. Cui, H.H. Guo, X.K. Wu, J.S. Zhang, Acta Metall. Sin. 44, 1286(2008). (in Chinese)
[34] Y. Bai, Z.H. Wang, X.B. Li, G.S. Huang, C.X. Li, Y. Li, Materials 11, 853 (2018)
[1] Boxiang Wang, Zhenhua Wang, Juntang Yuan, Bin Yu. Effects of (Ti, W)C Addition on the Microstructure and Mechanical Properties of Ultrafine WC-Co Tool Materials Prepared by Spark Plasma Sintering[J]. 金属学报英文版, 2020, 33(6): 892-902.
[2] Dongping Zhan, Guoxing Qiu, Changsheng Li, Yongkun Yang, Zhouhua Jiang, Huishu Zhang. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging[J]. 金属学报英文版, 2020, 33(6): 881-891.
[3] Jinyong Gao, Lijun Yang, Lei Cui, Peng Lu, Jun Yang, Yanjun Gao. Improving the Weld Formation and Mechanical Properties of the AA-5A06 Friction Pull Plug Welds by Axial Force Control[J]. 金属学报英文版, 2020, 33(6): 828-838.
[4] Xin Cai, Xiao-Qiang Hu, Lei-Gang Zheng, Dian-Zhong Li. Hot Deformation Behavior and Processing Maps of 0.3C-15Cr-1Mo-0.5N High Nitrogen Martensitic Stainless Steel[J]. 金属学报英文版, 2020, 33(5): 693-704.
[5] Jian Han, Zhixiong Zhu, Gang Wei, Xingxu Jiang, Qian Wang, Yangchuan Cai, Zhengyi Jiang. Microstructure and Mechanical Properties of Nb- and Nb + Ti-Stabilised 18Cr-2Mo Ferritic Stainless Steels[J]. 金属学报英文版, 2020, 33(5): 716-730.
[6] Mohamad Ebrahimnia, Yujiang Xie, Changtai Chi. Effect of laser power and deposition environment on the microstructure and properties of direct laser metal-deposited 12CrNi2 steel[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 528-538.
[7] Fu-Yue Wang, Xiang-Jie Wang, Wei Sun, Fang Yu, Jian-Zhong Cui. Low Frequency Electromagnetic Casting of 2195 Aluminum-Lithium Alloy and Its Effects on Microstructure and Mechanical Properties[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 338-350.
[8] Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436.
[9] Yi-Fei Li, Li Wang, Gong Zhang, Dong-ng Qi, Kui Du, Lang-Hong Lou. Anisotropic Stress Rupture Properties of a 3rd-Generation Nickel-Based Single-Crystal Superalloy at 1100 °C/150 MPa[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 446-458.
[10] Ying Ma, Fu-Yin Han, Cheng Liu, Ming-Zhe Li. Microstructure, Texture Evolution, and Mechanical Properties of ECAP-Processed ZAT522 Magnesium Alloy[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 233-242.
[11] Nan Xu, Ruo-Nan Feng, Wen-Feng Guo, Qi-Ning Song, Ye-Feng Bao. Effect of Zener-Hollomon Parameter on Microstructure and Mechanical Properties of Copper Subjected to Friction Stir Welding[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 319-326.
[12] Guo-Qing Wang, Yan-Hua Zhao, Ying-Ying Tang. Research Progress of Bobbin Tool Friction Stir Welding of Aluminum Alloys: A Review[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 13-29.
[13] Bin He, Lei Cui, Dong-Po Wang, Hui-Jun Li, Chen-Xi Liu. Microstructure and Mechanical Properties of RAFM-316L Dissimilar Joints by Friction Stir Welding with Different Butt Joining Modes[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 135-146.
[14] Hua Zhang, Chang-Yu Zhao, Qi-Long Guo, Rui-Sheng Yang, Li-Yuan Liu, San-Bao Lin. Microstructure and Corrosion Behavior of Friction Stir Welded Al Alloy Coated by In Situ Shot-Peening-Assisted Cold Spray[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 172-182.
[15] Gaoqiang Chen, Shuai Zhang, Yucan Zhu, Chengle Yang, Qingyu Shi. Thermo-mechanical Analysis of Friction Stir Welding: A Review on Recent Advances[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 3-12.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About AMSE
Privacy Statement
Terms & Conditions
Editorial Office: Acta Metallurgica Sinica(English Letters), 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-024-83978879
E-mail:ams@imr.ac.cn

Copyright © 2016 AMSE, All Rights Reserved.