Acta Metallurgica Sinica (English Letters) ›› 2019, Vol. 32 ›› Issue (6): 780-796.DOI: 10.1007/s40195-018-0863-9
Special Issue: 2019年腐蚀专辑-2
• Orginal Article • Previous Articles
					
													Yin Qi1,2, Wang Zhen-Yao1(
), Liu Miao-Ran1,3, Pan Chen1
												  
						
						
						
					
				
Received:2018-09-23
															
							
																	Revised:2018-11-17
															
							
															
							
																	Online:2019-06-10
															
							
																	Published:2019-06-17
															
						Supported by:Yin Qi, Wang Zhen-Yao, Liu Miao-Ran, Pan Chen. Synergistic Effect of NaCl and SO2 on the Initial Atmospheric Corrosion of Zinc Under Wet-Dry Cyclic Conditions[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(6): 780-796.
Add to citation manager EndNote|Ris|BibTeX
| Salts | NaCl | 3:1 | 1:1 | 1:3 | SO2 | 
|---|---|---|---|---|---|
| NaCl Deposition rate (mg m-2 d-1) | 1170 | 877.5 | 585 | 292.5 | 0 | 
| NaHSO3 Deposition rate (mg m-2 d-1) | 0 | 520.5 | 1141 | 1561.5 | 2082 | 
| Molar deposition rate ratio | - | 3:1 | 1:1 | 1:3 | - | 
Table 1 Deposition rates of the salts in each experimental group
| Salts | NaCl | 3:1 | 1:1 | 1:3 | SO2 | 
|---|---|---|---|---|---|
| NaCl Deposition rate (mg m-2 d-1) | 1170 | 877.5 | 585 | 292.5 | 0 | 
| NaHSO3 Deposition rate (mg m-2 d-1) | 0 | 520.5 | 1141 | 1561.5 | 2082 | 
| Molar deposition rate ratio | - | 3:1 | 1:1 | 1:3 | - | 
| Groups | Corrosion products | 
|---|---|
| NaCl | Zn5(OH)8Cl2·H2O Zn(OH)2 Zn5(CO3)2(OH)6  |  
| 3:1 | NaZn4SO4(OH)6Cl·6H2O Zn5(OH)8Cl2·H2O Zn(OH)2 Zn5(CO3)2(OH)6  |  
| 1:1 | NaZn4SO4(OH)6Cl·6H2O Zn(OH)2 Zn5(CO3)2(OH)6  |  
| 1:3 | NaZn4SO4Cl(OH)6·6H2O Na2Zn(SO4)2·4H2Oa Zn5(CO3)2(OH)6  |  
| SO2 | Na2Zn(SO4)2·4H2Oa ZnSO4·H2Oa Zn4SO4(OH)6·H2O  |  
Table 2 Corrosion products detected by XRD and FTIR on the corroded zinc samples
| Groups | Corrosion products | 
|---|---|
| NaCl | Zn5(OH)8Cl2·H2O Zn(OH)2 Zn5(CO3)2(OH)6  |  
| 3:1 | NaZn4SO4(OH)6Cl·6H2O Zn5(OH)8Cl2·H2O Zn(OH)2 Zn5(CO3)2(OH)6  |  
| 1:1 | NaZn4SO4(OH)6Cl·6H2O Zn(OH)2 Zn5(CO3)2(OH)6  |  
| 1:3 | NaZn4SO4Cl(OH)6·6H2O Na2Zn(SO4)2·4H2Oa Zn5(CO3)2(OH)6  |  
| SO2 | Na2Zn(SO4)2·4H2Oa ZnSO4·H2Oa Zn4SO4(OH)6·H2O  |  
																													Fig. 5 Surface morphologies of the zinc samples after removal of the corrosion products: a, b Group NaCl; c, d Group 3:1; e, f Group 1:1; g, h Group 1:3; i, j Group SO2
| Points | Zn (at%) | O (at%) | Cl (at%) | S (at%) | 
|---|---|---|---|---|
| A | 15.4 | 81.8 | 2.80 | - | 
| B | 29.9 | 56.3 | 13.8 | - | 
| C | 27.2 | 72.2 | 0.540 | - | 
| D | 30.3 | 64.6 | 5.08 | - | 
| E | 7.31 | 79.7 | - | 13.0 | 
| F | 28.2 | 66.6 | - | 5.21 | 
| G | 28.7 | 63.7 | - | 7.60 | 
Table 3 Element composition of the points marked in Figs. 6 and 7 examined by EDS
| Points | Zn (at%) | O (at%) | Cl (at%) | S (at%) | 
|---|---|---|---|---|
| A | 15.4 | 81.8 | 2.80 | - | 
| B | 29.9 | 56.3 | 13.8 | - | 
| C | 27.2 | 72.2 | 0.540 | - | 
| D | 30.3 | 64.6 | 5.08 | - | 
| E | 7.31 | 79.7 | - | 13.0 | 
| F | 28.2 | 66.6 | - | 5.21 | 
| G | 28.7 | 63.7 | - | 7.60 | 
| Points | Zn (at%) | O (at%) | Cl (at%) | S (at%) | 
|---|---|---|---|---|
| A | 15.7 | 74.6 | 4.87 | 4.79 | 
| B | 24.2 | 64.5 | 9.75 | 1.62 | 
| C | 16.4 | 73.4 | 4.88 | 5.34 | 
| D | 17.4 | 81.3 | 0.310 | 1.03 | 
| E | 7.20 | 78.8 | - | 14.0 | 
| F | 19.2 | 69.7 | 5.09 | 5.95 | 
Table 4 Element composition of the points marked in Fig. 8 examined by EDS
| Points | Zn (at%) | O (at%) | Cl (at%) | S (at%) | 
|---|---|---|---|---|
| A | 15.7 | 74.6 | 4.87 | 4.79 | 
| B | 24.2 | 64.5 | 9.75 | 1.62 | 
| C | 16.4 | 73.4 | 4.88 | 5.34 | 
| D | 17.4 | 81.3 | 0.310 | 1.03 | 
| E | 7.20 | 78.8 | - | 14.0 | 
| F | 19.2 | 69.7 | 5.09 | 5.95 | 
| Compounds | Zn (at%) | O (at%) | Cl (at%) | S (at%) | 
|---|---|---|---|---|
| Zn5(OH)8Cl2·H2O | 31.2 | 56.2 | 12.5 | - | 
| NaZn4SO4(OH)6Cl·6H2O | 18.2 | 72.7 | 4.54 | 4.54 | 
| Zn4SO4(OH)6·5H2O | 20.0 | 75.0 | - | 5.00 | 
| Na2Zn(SO4)2·4H2O | 6.67 | 80.0 | - | 13.3 | 
| ZnSO4·H2O | 14.3 | 71.4 | - | 14.3 | 
Table 5 Element composition of zinc corrosion products
| Compounds | Zn (at%) | O (at%) | Cl (at%) | S (at%) | 
|---|---|---|---|---|
| Zn5(OH)8Cl2·H2O | 31.2 | 56.2 | 12.5 | - | 
| NaZn4SO4(OH)6Cl·6H2O | 18.2 | 72.7 | 4.54 | 4.54 | 
| Zn4SO4(OH)6·5H2O | 20.0 | 75.0 | - | 5.00 | 
| Na2Zn(SO4)2·4H2O | 6.67 | 80.0 | - | 13.3 | 
| ZnSO4·H2O | 14.3 | 71.4 | - | 14.3 | 
 
  | 
									
| [1] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. | 
| [2] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. | 
| [3] | Dong-Dong Gu, Jian Peng, Jia-Wen Wang, Zheng-Tao Liu, Fu-Sheng Pan. Effect of Mn Modification on the Corrosion Susceptibility of Mg-Mn Alloys by Magnesium Scrap [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 1-11. | 
| [4] | Yuanyuan Liu, Zhongmin Lang, Jinlong Cui, Shengli An. Performance of Nb0.8Zr0.2 Layer-Modified AISI430 Stainless Steel as Bipolar Plates for Direct Formic Acid Fuel Cells [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 77-84. | 
| [5] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. | 
| [6] | Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38. | 
| [7] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. | 
| [8] | Yu-Wei Liu, Jian Zhang, Xiao Lu, Miao-Ran Liu, Zhen-Yao Wang. Effect of Metal Cations on Corrosion Behavior and Surface Structure of Carbon Steel in Chloride Ion Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1302-1310. | 
| [9] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. | 
| [10] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. | 
| [11] | Xigang Yang, Yun Zhou, Ruihua Zhu, Shengqi Xi, Cheng He, Hongjing Wu, Yuan Gao. A Novel, Amorphous, Non-equiatomic FeCrAlCuNiSi High-Entropy Alloy with Exceptional Corrosion Resistance and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1057-1063. | 
| [12] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. | 
| [13] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. | 
| [14] | Yunhai Su, Xuewei Liang, Yunqi Liu, Zhiyong Dai. Effect of Ti Addition on the Microstructure and Property of FeAlCuCrNiMo0.6 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 957-967. | 
| [15] | Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 789-798. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
			   WeChat
			