Acta Metallurgica Sinica (English Letters) ›› 2018, Vol. 31 ›› Issue (7): 723-734.DOI: 10.1007/s40195-017-0696-y
Special Issue: 2018年腐蚀专辑
• Orginal Article • Previous Articles Next Articles
Yi-Ming Li1, Yang-Huan Zhang1, Hui-Ping Ren1()
Received:
2017-07-31
Revised:
2017-09-24
Online:
2018-07-10
Published:
2018-06-06
Yi-Ming Li, Yang-Huan Zhang, Hui-Ping Ren. Degradation Characters of La-Mg-Ni-Based Metal Hydride Alloys: Corrosion and Pulverization Behaviors[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(7): 723-734.
Add to citation manager EndNote|Ris|BibTeX
Alloy | Location | La | Mg | Ni | Ni/(La + Mg) | Phase |
---|---|---|---|---|---|---|
La2MgNi9 | 1 | 16.15 | 20.69 | 63.16 | 1.71 | (La,Mg)Ni2 |
2 | 17.93 | 9.18 | 72.89 | 2.69 | (La,Mg)Ni3 | |
3 | 19.35 | 5.16 | 76.50 | 3.26 | (La,Mg)2Ni7 | |
4 | 17.17 | 0.00 | 82.83 | 4.82 | LaNi5 | |
La1.5Mg0.5Ni7 | 1 | 16.31 | 10.32 | 73.01 | 2.63 | (La,Mg)Ni3 |
2 | 18.91 | 4.51 | 76.58 | 3.27 | (La,Mg)2Ni7 | |
3 | 17.87 | 0.00 | 83.13 | 4.96 | LaNi5 | |
4 | 17.74 | 3.30 | 78.95 | 3.75 | (La,Mg)5Ni19 | |
La4MgNi19 | 1 | 18.31 | 4.37 | 77.32 | 3.41 | (La,Mg)2Ni7 |
2 | 19.16 | 2.73 | 78.11 | 3.57 | (La,Mg)5Ni19 | |
3 | 17.35 | 0.00 | 82.65 | 4.76 | LaNi5 |
Table 1 EDS results of annealed alloys corresponding to areas marked in Fig. 1
Alloy | Location | La | Mg | Ni | Ni/(La + Mg) | Phase |
---|---|---|---|---|---|---|
La2MgNi9 | 1 | 16.15 | 20.69 | 63.16 | 1.71 | (La,Mg)Ni2 |
2 | 17.93 | 9.18 | 72.89 | 2.69 | (La,Mg)Ni3 | |
3 | 19.35 | 5.16 | 76.50 | 3.26 | (La,Mg)2Ni7 | |
4 | 17.17 | 0.00 | 82.83 | 4.82 | LaNi5 | |
La1.5Mg0.5Ni7 | 1 | 16.31 | 10.32 | 73.01 | 2.63 | (La,Mg)Ni3 |
2 | 18.91 | 4.51 | 76.58 | 3.27 | (La,Mg)2Ni7 | |
3 | 17.87 | 0.00 | 83.13 | 4.96 | LaNi5 | |
4 | 17.74 | 3.30 | 78.95 | 3.75 | (La,Mg)5Ni19 | |
La4MgNi19 | 1 | 18.31 | 4.37 | 77.32 | 3.41 | (La,Mg)2Ni7 |
2 | 19.16 | 2.73 | 78.11 | 3.57 | (La,Mg)5Ni19 | |
3 | 17.35 | 0.00 | 82.65 | 4.76 | LaNi5 |
Alloy | Phase type | a (nm) | c (nm) | Content (wt%) |
---|---|---|---|---|
La2MgNi9 | MgCu4Sn | 0.71660 | - | 4.1 |
PuNi3 | 0.50358 | 2.43612 | 61.4 | |
CaCu5 | 0.50182 | 0.39806 | 0.5 | |
Ce2Ni7 | 0.50387 | 2.42605 | 13.6 | |
Gd2Co7 | 0.50350 | 3.63793 | 20.4 | |
La1.5Mg0.5Ni7 | PuNi3 | 0.50339 | 2.42432 | 11.1 |
Ce2Ni7 | 0.50334 | 2.42635 | 32.6 | |
Gd2Co7 | 0.50341 | 3.43493 | 21.9 | |
Ce5Ni19 | 0.50319 | 4.84459 | 16.3 | |
Pr5Co19 | 0.50347 | 3.22350 | 13.5 | |
CaCu5 | 0.50182 | 0.39806 | 4.6 | |
La4MgNi19 | Ce2Ni7 | 0.50341 | 2.42416 | 22.8 |
Gd2Co7 | 0.50298 | 3.63639 | 10.7 | |
Ce5Ni19 | 0.50323 | 4.83377 | 27.5 | |
Pr5Co19 | 0.50328 | 3.22454 | 15.3 | |
CaCu5 | 0.50212 | 0.39792 | 23.7 |
Table 2 Crystal structure, cell parameters and phase content of annealed alloys
Alloy | Phase type | a (nm) | c (nm) | Content (wt%) |
---|---|---|---|---|
La2MgNi9 | MgCu4Sn | 0.71660 | - | 4.1 |
PuNi3 | 0.50358 | 2.43612 | 61.4 | |
CaCu5 | 0.50182 | 0.39806 | 0.5 | |
Ce2Ni7 | 0.50387 | 2.42605 | 13.6 | |
Gd2Co7 | 0.50350 | 3.63793 | 20.4 | |
La1.5Mg0.5Ni7 | PuNi3 | 0.50339 | 2.42432 | 11.1 |
Ce2Ni7 | 0.50334 | 2.42635 | 32.6 | |
Gd2Co7 | 0.50341 | 3.43493 | 21.9 | |
Ce5Ni19 | 0.50319 | 4.84459 | 16.3 | |
Pr5Co19 | 0.50347 | 3.22350 | 13.5 | |
CaCu5 | 0.50182 | 0.39806 | 4.6 | |
La4MgNi19 | Ce2Ni7 | 0.50341 | 2.42416 | 22.8 |
Gd2Co7 | 0.50298 | 3.63639 | 10.7 | |
Ce5Ni19 | 0.50323 | 4.83377 | 27.5 | |
Pr5Co19 | 0.50328 | 3.22454 | 15.3 | |
CaCu5 | 0.50212 | 0.39792 | 23.7 |
Alloy | MGC (wt%) | RGC (wt%) | DC (mA h g-1) | S100 (%) |
---|---|---|---|---|
La2MgNi9 | 1.594 | 1.15 | 350.8 | 70.3 |
La1.5Mg0.5Ni7 | 1.619 | 1.275 | 365.5 | 75.4 |
La4MgNi19 | 1.572 | 1.443 | 332.1 | 70.1 |
Table 3 Hydrogen storage performances of three alloys
Alloy | MGC (wt%) | RGC (wt%) | DC (mA h g-1) | S100 (%) |
---|---|---|---|---|
La2MgNi9 | 1.594 | 1.15 | 350.8 | 70.3 |
La1.5Mg0.5Ni7 | 1.619 | 1.275 | 365.5 | 75.4 |
La4MgNi19 | 1.572 | 1.443 | 332.1 | 70.1 |
Alloy | Oxygen content after electrochemical cycling (wt%) | Oxygen content (wt%)^after immersion | Size retention after gaseous cycling (%) |
---|---|---|---|
La2MgNi9 | 2.68 | 4.66 | 84.6 |
La1.5Mg0.5Ni7 | 3.21 | 4.38 | 68.5 |
La4MgNi19 | 3.62 | 4.14 | 66.5 |
Table 4 Oxygen contents and size retention of alloys
Alloy | Oxygen content after electrochemical cycling (wt%) | Oxygen content (wt%)^after immersion | Size retention after gaseous cycling (%) |
---|---|---|---|
La2MgNi9 | 2.68 | 4.66 | 84.6 |
La1.5Mg0.5Ni7 | 3.21 | 4.38 | 68.5 |
La4MgNi19 | 3.62 | 4.14 | 66.5 |
Alloy | La2.3Mg0.7Ni9 | La2MgNi9 | LaMg2Ni9 | La1.5Mg0.5Ni7 | La1.63Mg0.37Ni7 | La4MgNi19 | LaNi5 |
---|---|---|---|---|---|---|---|
Type | AB3 | AB3 | AB3 | A2B7 | A2B7 | A5B19 | AB5 |
?V/V | 27.1 | 26.7 | 23 | 25.2 | 25.6 | 25.3 | 24 |
References | [ | [ | [ | [ | [ | [ | [ |
Table 5 Volume expansion of various La-Mg-Ni phases by hydrogenation in the reported works
Alloy | La2.3Mg0.7Ni9 | La2MgNi9 | LaMg2Ni9 | La1.5Mg0.5Ni7 | La1.63Mg0.37Ni7 | La4MgNi19 | LaNi5 |
---|---|---|---|---|---|---|---|
Type | AB3 | AB3 | AB3 | A2B7 | A2B7 | A5B19 | AB5 |
?V/V | 27.1 | 26.7 | 23 | 25.2 | 25.6 | 25.3 | 24 |
References | [ | [ | [ | [ | [ | [ | [ |
Fig. 12 Original optical images of La2MgNi9 a, b; La1.5Mg0.5Ni7 c, d; alloys, and indentation morphologies of La2MgNi9 e, f; La1.5Mg0.5Ni7 g, h; alloys e, g; f, h were tested under 10 and 25 g, f, respectively)
|
[1] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. |
[2] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[3] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[4] | Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38. |
[5] | Dong-Dong Gu, Jian Peng, Jia-Wen Wang, Zheng-Tao Liu, Fu-Sheng Pan. Effect of Mn Modification on the Corrosion Susceptibility of Mg-Mn Alloys by Magnesium Scrap [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 1-11. |
[6] | Yuanyuan Liu, Zhongmin Lang, Jinlong Cui, Shengli An. Performance of Nb0.8Zr0.2 Layer-Modified AISI430 Stainless Steel as Bipolar Plates for Direct Formic Acid Fuel Cells [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 77-84. |
[7] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[8] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[9] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[10] | Yu-Wei Liu, Jian Zhang, Xiao Lu, Miao-Ran Liu, Zhen-Yao Wang. Effect of Metal Cations on Corrosion Behavior and Surface Structure of Carbon Steel in Chloride Ion Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1302-1310. |
[11] | Xigang Yang, Yun Zhou, Ruihua Zhu, Shengqi Xi, Cheng He, Hongjing Wu, Yuan Gao. A Novel, Amorphous, Non-equiatomic FeCrAlCuNiSi High-Entropy Alloy with Exceptional Corrosion Resistance and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1057-1063. |
[12] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[13] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
[14] | Yunhai Su, Xuewei Liang, Yunqi Liu, Zhiyong Dai. Effect of Ti Addition on the Microstructure and Property of FeAlCuCrNiMo0.6 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 957-967. |
[15] | Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 789-798. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||