Acta Metallurgica Sinica (English Letters) ›› 2016, Vol. 29 ›› Issue (6): 538-545.DOI: 10.1007/s40195-016-0416-z
• Orginal Article • Previous Articles Next Articles
Hui Wang1,2(), Shang-Gang Xiao1, Tao Zhang1, Qiang Xu1, Zeng-Qian Liu3, Meng-Yue Wu2, Frans Tichelaar2, Henny Zandbergen2
Received:
2016-04-13
Revised:
2016-04-13
Online:
2016-04-13
Published:
2016-06-10
Hui Wang, Shang-Gang Xiao, Tao Zhang, Qiang Xu, Zeng-Qian Liu, Meng-Yue Wu, Frans Tichelaar, Henny Zandbergen. Direct TEM Observation of Phase Separation and Crystallization in Cu45Zr45Ag10 Metallic Glass[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(6): 538-545.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 TEM image of Cu45Zr45Ag10 metallic glass. a BF image shows homogenous contrast, and SAED pattern in the inset shows a halo ring typical of amorphous structure; b HREM image shows a maze-like pattern, indicating a fully amorphous structure
Fig. 2 a Preparation scheme of TEM sample cut by focused ion beam from the electrochemically polished sample, b the sample transferred onto the in situ heating chip by an ex situ nanomanipulator
Fig. 3 a, b HAADF images of Cu45Zr45Ag10 amorphous alloy acquired at 200 °C at a heating rate of 20 K/min and the EDX spectra in inset b, c HREM image of amorphous structure of both Ag-rich (circled dark area) and Cu-rich matrix, d SAED pattern showing a typical amorphous halo ring
Fig. 4 HAADF images showing the microstructure evolution of Cu45Zr45Ag10 amorphous alloy at 300 °C a, b and 380 °C c, d at a heating rate of 20 K/min. The growth and coalescence of Ag-rich nanospheres occur and a few Cu-rich nanocrystals precipitate at 300 °C (as indicated by bright arrow in b). Ag-rich nanospheres aggregate in a manner similar to grain boundary segregation in crystalline alloys (schemed by blue broken lines), followed by the rapid precipitation of Cu-rich nanocrystals in the remaining amorphous matrix at 380 °C c, d
Fig. 5 HAADF images showing the microstructure evolution of Cu45Zr45Ag10 amorphous alloy at 450 °C a, b, 500 °C c, d at a heating rate of 20 K/min. Ag-rich areas become crystallized and form a network-like structure at 450 °C, impeding further coarsening of Cu-rich nanocrystals at 500 °C
Fig. 6 Scheme of crystallization mechanism of Cu45Zr45Ag10 metallic glass. There are four typical steps: a phase separation into Ag-rich nanospheres (marked by blue dots) within 5 nm via nucleation and growth mode at 200 °C, b Ag-rich nanospheres aggregation in a manner similar to grain boundary segregation in crystalline alloys at 380 °C, c Cu-rich nanocrystals (marked by red rectangles) precipitated quickly from the remaining Cu-rich amorphous matrix at 380 °C, d crystallization and growth of Ag-rich nanospheres, forming a network-like structure, and thus retard the further coarsening of Cu-rich crystals
[1] | D.H. Kim, W.T. Kim, E.S. Park, N. Mattern, J. Eckert, Prog. Mater. Sci. 58, 1103(2013) |
[2] | H.J. Chang, W. Yook, E.S. Park, J.S. Kyeong, D.H. Kim, Acta Mater. 58, 2483(2010) |
[3] | J. He, H.X. Jiang, S. Chen, J.Z. Zhao, L. Zhao, J. Non-Cryst. Solids 357, 3561 (2011) |
[4] | J. He, H.Q. Li, B.J. Yang, J.Z. Zhao, H.F. Zhang, Z.Q. Hu, J. Alloys Compd. 489, 535(2010) |
[5] | Y. Wu, H. Wang, X.J. Liu, X.H. Chen, X.D. Hui, Y. Zhang, Z.P. Lu, J. Mater. Sci. Technol. 30, 566(2014) |
[6] | B.J. Park, H.J. Chang, D.H. Kim, W.T. Kim, K. Chattopadhyay, T.A. Abinandanan, S. Bhattacharyya, Phys. Rev. Lett. 96, 245503(2006) |
[7] | Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Science 315, 1385 (2007) |
[8] | S.S. Chen, H.R. Zhang, I. Todd, Scr. Mater. 72-73, 47(2014) |
[9] | X.H. Du, J.C. Huang, H.M. Chen, H.S. Chou, Y.H. Lai, K.C. Hsieh, J. S.C. Intermetallics 17, 607 (2009) |
[10] | E.S. Park, D.H. Kim, Acta Mater. 54, 2597(2006) |
[11] | J. Bokeloh, N. Boucharat, H. Rösner, G. Wilde, Acta Mater. 58, 3919(2010) |
[12] | K.K. Sahu, N.A. Mauro, L. Longstreth-Spoor, D. Saha, Z. Nussinov, M.K. Miller, K.F. Kelton, Acta Mater. 58, 4199(2010) |
[13] | S. Lan, Y.L. Yip, M.T. Lau, H.W. Kui, J. Non-Cryst. Solids 358, 1298 (2012) |
[14] | F.R. Niessen, Cohesion in Metals (Elsevier Science Publishers, Amsterdam, 1988), p. 224 |
[15] | W. Zhang, F. Jia, Q. Zhang, A. Inoue, Mater. Sci. Eng. A 459, 330 (2007) |
[16] | G.J. Fan, M. Freels, H. Choo, P.K. Liaw, J. J.Z. Appl. Phys. Lett. 89, 241917(2006) |
[17] | H. Wang, T. Hu, J.Y. Qin, T. Zhang, J. Appl. Phys. 112, 073520(2012) |
[18] | T. Fujita, P.F. Guan, H.W. Sheng, A. Inoue, T. Sakurai, M.W. Chen, Phys. Rev. B 81, 140204(R) (2010) |
[19] | T. Fujita, K. Konno, W. Zhang, V. Kumar, M. Matsuura, A. Inoue, T. Sakurai, M.W. Chen, Phys. Rev. Lett. 103, 075502(2009) |
[20] | D.V. Louzguine, K. Ota, G. Vaughan, A. Inoue, J. Non-Crystal. Solids 351, 1639 (2005) |
[21] | W.H. Wang, P. Wen, D.Q. Zhao, M.X. Pan, T. Okada, W. Utsumi, Appl. Phys. Lett. 83, 5202(2003) |
[22] | W.H. Wang, E. Wu, R.J. Wang, S.J. Kennedy, A.J. Studer, Phys. Rev. B 66, 104205 (2002) |
[23] | E. Pekarskaya, J.F. Loffler, W.L. Johnson, Acta Mater. 51, 4045(2003) |
[24] | X.Y. Chen, S.G. Zhang, M.X. Xia, J.G. Li, Acta Metall. Sin. (Engl. Lett.) 28, 1332(2015) |
[25] | J.P. Langmore, J. Wall, M.S. Isaacson, Optik 38, 335 (1973) |
[26] | J.H. Han, N. Mattern, U. Vainio, A. Shariq, S.W. Sohn, D.H. Kim, J. Eckert, Acta Mater. 66, 262(2014) |
[27] | T. Nagase, A. Yokoyama, Y. Umakoshi, Scr. Mater. 63, 1020(2010) |
[28] | K.K. Song, P. Gargarella, S. Pauly, G.Z. Ma, U. Kühn, J. Eckert, J. Appl. Phys. 112, 063503(2012) |
[1] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. |
[2] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
[3] | Kwang-Su Kim, Lin-Xiu Du, Hyo-sung Choe, Tae-Hyong Lee, Gyong-Chol Lee. Influence of Vanadium Content on Hot Deformation Behavior of Low-Carbon Boron Microalloyed Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 705-715. |
[4] | Jian Xun, Gaoyong Lin, Huiqun Liu, Siyu Zhao, Jing Chen, Xun Dai, Ruiqian Zhang. Texture Evolution and Dynamic Recrystallization of Zr-1Sn-0.3Nb-0.3Fe-0.1Cr Alloy During Hot Rolling [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 215-224. |
[5] | A. Shah S., D. Wu, Chen R. S., Song G. S.. Temperature Effects on the Microstructures of Mg-Gd-Y Alloy Processed by Multi-direction Impact Forging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 243-251. |
[6] | Jinshan He, Zhengrong Yu, Longfei Li, Xitao Wang, Qiang Feng. Effect of grit blasting and subsequent heat treatment on stress rupture property of a Ni-based single-crystal superalloy SGX3 [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1681-1688. |
[7] | Song-Wei Wang, Hong-Wu Song, Yan Chen, Shi-Hong Zhang, Hai-Hong Li. Evolution of Annealing Twins and Recrystallization Texture in Thin-Walled Copper Tube During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1618-1626. |
[8] | Hongduo Wang, Kuaishe Wang, Wen Wang, Yongxin Lu, Pai Peng, Peng Han, Ke Qiao, Zhihao Liu, Lei Wang. Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1556-1570. |
[9] | Haoqiang Zhang, Xixi Niu, Zhiliang Pei, Nanlin Shi, Jun Gong, Chao Sun. Effects of Cr and Al Contents on the Preparation of SiC Fiber-Reinforced NiCrAl Alloy Matrix Composite [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1416-1422. |
[10] | Hong-Xuan Zhang, Shuai-Feng Chen, Ming Cheng, Ce Zheng, Shi-Hong Zhang. Modeling the Dynamic Recrystallization of Mg-11Gd-4Y-2Zn-0.4Zr Alloy Considering Non-uniform Deformation and LPSO Kinking During Hot Compression [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1122-1134. |
[11] | Le Zhang, Wei Wang, M. Babar Shahzad, Yi-Yin Shan, Ke Yang. Hot Deformation Behavior of an Ultra-High-Strength Fe-Ni-Co-Based Maraging Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1161-1172. |
[12] | Yi-Tao Wang, Jian-Bo Li, Yun-Chang Xin, Xian-Hua Chen, Muhammad Rashad, Bin Liu, Yong Liu. Hot Deformation Behavior and Hardness of a CoCrFeMnNi High-Entropy Alloy with High Content of Carbon [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 932-943. |
[13] | Zhi-Chao Ma, Xiao-Xi Ma, Hong-Wei Zhao, Fu Zhang, Li-Ming Zhou, Lu-Quan Ren. Novel Crystallization Behaviors of Zr-Based Metallic Glass Under Thermo-Mechanical Coupled Fatigue Loading Condition [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 797-802. |
[14] | Kun-Kun Deng, Cui-Ju Wang, Kai-Bo Nie, Xiao-Jun Wang. Recent Research on the Deformation Behavior of Particle Reinforced Magnesium Matrix Composite: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 413-525. |
[15] | Wilasinee Kingkam, Cheng-Zhi Zhao, Hong Li, He-Xin Zhang, Zhi-Ming Li. Hot Deformation and Corrosion Resistance of High-Strength Low-Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 495-505. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||