Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (4): 477-486.DOI: 10.1007/s40195-015-0222-z
• Orginal Article • Previous Articles Next Articles
Zheng-Bing Wang1, Hong-Xiang Hu1, Chun-Bo Liu2, Huai-Ning Chen3, Yu-Gui Zheng1()
Received:
2014-08-14
Revised:
2014-09-30
Online:
2015-01-28
Published:
2015-07-23
Zheng-Bing Wang, Hong-Xiang Hu, Chun-Bo Liu, Huai-Ning Chen, Yu-Gui Zheng. Corrosion Behaviors of Pure Titanium and Its Weldment in Simulated Desulfurized Flue Gas Condensates in Thermal Power Plant Chimney[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(4): 477-486.
Add to citation manager EndNote|Ris|BibTeX
C | Fe | H | N | O | Ti |
---|---|---|---|---|---|
0.08 | 0.20 | 0.015 | 0.03 | 0.18 | Bal. |
Table 1 Nominal chemical composition (wt%) of as-received grade 2 titanium plate used for TIG welding
C | Fe | H | N | O | Ti |
---|---|---|---|---|---|
0.08 | 0.20 | 0.015 | 0.03 | 0.18 | Bal. |
Process | Current (A) | Pulse frequency (Hz) | Filler rod diameter (mm) | Welding speed (mm min-1) | Torch gas flow (L min-1) |
---|---|---|---|---|---|
A | 70/10 | 5 | 1 | 150 | 12 |
B | 75/10 | 5 | 1.2 | 150 | 12 |
C | 75/10 | Unpulsed | 1.2 | 150 | 12 |
Table 2 Detail process parameters of Dc pulse TIG welding
Process | Current (A) | Pulse frequency (Hz) | Filler rod diameter (mm) | Welding speed (mm min-1) | Torch gas flow (L min-1) |
---|---|---|---|---|---|
A | 70/10 | 5 | 1 | 150 | 12 |
B | 75/10 | 5 | 1.2 | 150 | 12 |
C | 75/10 | Unpulsed | 1.2 | 150 | 12 |
Symbol | Sample |
---|---|
BM | Base metal |
A(B,C)-FZ-f | FZ sample with shielding gas welded with Parameter A(B,C) |
A(B,C)-FZ-b | FZ sample without shielding gas welded with Parameter A(B,C) |
A(B,C)-HAZ-f | HAZ sample with shielding gas welded with Parameter A(B,C) |
A(B,C)-HAZ-b | HAZ sample without shielding gas welded with Parameter A(B,C) |
Table 3 Explanation of the symbol used in electrochemical tests
Symbol | Sample |
---|---|
BM | Base metal |
A(B,C)-FZ-f | FZ sample with shielding gas welded with Parameter A(B,C) |
A(B,C)-FZ-b | FZ sample without shielding gas welded with Parameter A(B,C) |
A(B,C)-HAZ-f | HAZ sample with shielding gas welded with Parameter A(B,C) |
A(B,C)-HAZ-b | HAZ sample without shielding gas welded with Parameter A(B,C) |
H2SO4 | HCl | HNO3 | H3PO4 | HF | H2O |
---|---|---|---|---|---|
2.03 | 0.031 | 0.03 | 0.012 | 0.0092 | Bal. |
Table 4 Chemical composition (wt%) of the simulated desulfurized flue gas condensates
H2SO4 | HCl | HNO3 | H3PO4 | HF | H2O |
---|---|---|---|---|---|
2.03 | 0.031 | 0.03 | 0.012 | 0.0092 | Bal. |
Fig. 3 a-c optical microstructures of FZ samples welded with Parameter A, B and C, respectively; d-e optical microstructures of HAZ samples welded with Parameter A, B and C, respectively
Fig. 4 Potentiodynamic polarization curves of BM, FZ and HAZ samples in naturally aerated simulated desulfurized flue gas condensates: a Parameter A, b Parameter B, c Parameter C
Sample | E corr (mV) | I corr (μA cm-2) |
---|---|---|
A-FZ-f | -667 ± 16 | 9.0 ± 0.8 |
A-FZ-b | -677 ± 26 | 9.6 ± 0.6 |
A-HAZ-f | -672 ± 9 | 10.7 ± 1.2 |
A-HAZ-b | -673 ± 11 | 10.8 ± 1.1 |
B-FZ-f | -667 ± 21 | 11.8 ± 2.3 |
B-FZ-b | -673 ± 20 | 8.8 ± 0.4 |
B-HAZ-f | -649 ± 8 | 10.2 ± 0.9 |
B-HAZ-b | -667 ± 15 | 9.1 ± 0.2 |
B-FZ-f | -689 ± 34 | 10.3 ± 1.6 |
B-FZ-b | -672 ± 17 | 11.4 ± 1.6 |
B-HAZ-f | -683 ± 40 | 9.4 ± 1.7 |
B-HAZ-b | -689 ± 43 | 10.9 ± 2.9 |
BM | -669 ± 2 | 9.9 ± 0.5 |
Table 5 Electrochemical parameters obtained from the polarization curves
Sample | E corr (mV) | I corr (μA cm-2) |
---|---|---|
A-FZ-f | -667 ± 16 | 9.0 ± 0.8 |
A-FZ-b | -677 ± 26 | 9.6 ± 0.6 |
A-HAZ-f | -672 ± 9 | 10.7 ± 1.2 |
A-HAZ-b | -673 ± 11 | 10.8 ± 1.1 |
B-FZ-f | -667 ± 21 | 11.8 ± 2.3 |
B-FZ-b | -673 ± 20 | 8.8 ± 0.4 |
B-HAZ-f | -649 ± 8 | 10.2 ± 0.9 |
B-HAZ-b | -667 ± 15 | 9.1 ± 0.2 |
B-FZ-f | -689 ± 34 | 10.3 ± 1.6 |
B-FZ-b | -672 ± 17 | 11.4 ± 1.6 |
B-HAZ-f | -683 ± 40 | 9.4 ± 1.7 |
B-HAZ-b | -689 ± 43 | 10.9 ± 2.9 |
BM | -669 ± 2 | 9.9 ± 0.5 |
Fig. 5 Nyquist plots of BM, FZ and HAZ samples in naturally aerated simulated desulfurized flue gas condensates: a Parameter A, b Parameter B, c Parameter C
Sample | R s (Ω cm2) | C dl (μF cm-2) | n | R ct (Ω cm2) | C f (μF cm-2) | n | R f (Ω cm2) | χ 2 |
---|---|---|---|---|---|---|---|---|
BM | 2.952 | 551.1 | 0.93 | 492.1 | 24,320 | 0.97 | 1,099 | 1 × 10-4 |
A-FZ-f | 2.732 | 821.8 | 0.89 | 475.5 | 29,420 | 1 | 891.2 | 4 × 10-4 |
A-FZ-b | 2.697 | 615.5 | 0.92 | 495.4 | 24,020 | 0.96 | 865.6 | 2 × 10-4 |
A-HAZ-f | 2.849 | 568.5 | 0.92 | 480.1 | 24,070 | 1 | 1,108 | 3 × 10-3 |
A-HAZ-b | 2.764 | 562.1 | 0.93 | 497.4 | 21,930 | 0.99 | 965.3 | 2 × 10-4 |
B-FZ-f | 2.575 | 637.1 | 0.91 | 525.3 | 31,580 | 0.98 | 1,021 | 5 × 10-4 |
B-FZ-b | 3.171 | 604.1 | 0.92 | 506.7 | 20,560 | 0.99 | 1,207 | 5 × 10-4 |
B-HAZ-f | 2.170 | 595.7 | 0.93 | 597.7 | 28,580 | 1 | 1,081 | 4 × 10-4 |
B-HAZ-b | 2.271 | 661.7 | 0.91 | 643.4 | 29,030 | 0.96 | 1,208 | 4 × 10-4 |
C-FZ-f | 1.762 | 397.0 | 0.91 | 514.5 | 22,550 | 1 | 1,105 | 9 × 10-4 |
C-FZ-b | 2.093 | 416.1 | 0.92 | 505.5 | 27,810 | 0.98 | 993.6 | 9 × 10-4 |
C-HAZ-f | 1.944 | 328.2 | 0.91 | 553.5 | 18,810 | 1 | 1,392 | 1 × 10-3 |
C-HAZ-b | 2.297 | 345.3 | 0.89 | 592.3 | 32,360 | 0.97 | 931.3 | 3 × 10-4 |
Table 6 Parameters of the equivalent circuit obtained by fitting the experimental results of EIS
Sample | R s (Ω cm2) | C dl (μF cm-2) | n | R ct (Ω cm2) | C f (μF cm-2) | n | R f (Ω cm2) | χ 2 |
---|---|---|---|---|---|---|---|---|
BM | 2.952 | 551.1 | 0.93 | 492.1 | 24,320 | 0.97 | 1,099 | 1 × 10-4 |
A-FZ-f | 2.732 | 821.8 | 0.89 | 475.5 | 29,420 | 1 | 891.2 | 4 × 10-4 |
A-FZ-b | 2.697 | 615.5 | 0.92 | 495.4 | 24,020 | 0.96 | 865.6 | 2 × 10-4 |
A-HAZ-f | 2.849 | 568.5 | 0.92 | 480.1 | 24,070 | 1 | 1,108 | 3 × 10-3 |
A-HAZ-b | 2.764 | 562.1 | 0.93 | 497.4 | 21,930 | 0.99 | 965.3 | 2 × 10-4 |
B-FZ-f | 2.575 | 637.1 | 0.91 | 525.3 | 31,580 | 0.98 | 1,021 | 5 × 10-4 |
B-FZ-b | 3.171 | 604.1 | 0.92 | 506.7 | 20,560 | 0.99 | 1,207 | 5 × 10-4 |
B-HAZ-f | 2.170 | 595.7 | 0.93 | 597.7 | 28,580 | 1 | 1,081 | 4 × 10-4 |
B-HAZ-b | 2.271 | 661.7 | 0.91 | 643.4 | 29,030 | 0.96 | 1,208 | 4 × 10-4 |
C-FZ-f | 1.762 | 397.0 | 0.91 | 514.5 | 22,550 | 1 | 1,105 | 9 × 10-4 |
C-FZ-b | 2.093 | 416.1 | 0.92 | 505.5 | 27,810 | 0.98 | 993.6 | 9 × 10-4 |
C-HAZ-f | 1.944 | 328.2 | 0.91 | 553.5 | 18,810 | 1 | 1,392 | 1 × 10-3 |
C-HAZ-b | 2.297 | 345.3 | 0.89 | 592.3 | 32,360 | 0.97 | 931.3 | 3 × 10-4 |
Fig. 7 Corrosion morphology of BM and weldment with different parameters after immersion for 24 h in the simulated condensates: a pure titanium; b Parameter A; c Parameter B; d Parameter C
Fig. 8 Potentiodynamic polarization curves of the polished HAZ samples (as-polished samples) and the unpolished samples after welding (as-welded samples): a Parameter A, b Parameter B, c Parameter C
[1] | J. Bordzilowski, K. Darowicki,Anti-Corros. Method Mater. 45, 388(1998) |
[2] | K. Chandra, V. Kain, G.K. Dey, J. Fail. Anal. Prev. 11, 466(2011) |
[3] | International Committee on Industrial Chimneys, Model Code for Steel Chimneys (Germany, 1999) |
[4] | Y.L. Qi, J. Deng, Q. Hong, L.Y. Zeng, Mater. Sci. Eng. , A 280, 177 (2000) |
[5] | J.G. Anton, E. Blasco-Tamarit, A. Igual-Munoz, D. Garcia-Garcia,Corros. Sci. 49, 1000(2007) |
[6] | A.R. Shankar, G. Gopalakrishnan, V. Balusamy, U.K. Mudali, J. Mater. Eng. Perform. 18, 1116(2009) |
[7] | A. Short,Mater. Sci. Technol. 25, 309(2009) |
[8] | I.A. Orsi, L.B. Raimundo, O.L. Bezzon, M.A. de Arruda Nobilo, S.E. Kuri, C.A.D. Rovere, V.O. Pagnano, J. Prosthodont. 20, 628(2011) |
[9] | X.L. Gao, L.J. Zhang, J. Liu, J.X. Zhang, Mater. Sci. Eng. , A 559, 14 (2013) |
[10] | M. Atapour, A.L. Pilchak, G.S. Frankel, J.C. Williams, Metall. Mater. Trans. A 41A, 2318 (2010) |
[11] | G. Lütjering, J.C. Williams,Titanium, 2nd edn. (Springer, Manchester, 2003), p. 193 |
[12] | E. Blasco-Tamarit, A. Igual-Munoz, J. Garcia Anton, D.M. Garcia-Garcia, Corros. Sci. 51, 1095(2009) |
[13] | S. Sundaresan, G.D.J. Ram, G.M. Reddy, Mater. Sci. Eng. , A 262, 88 (1999) |
[14] | B.H. Choi, B.K. Choi, J. Mater. Process. Technol. 201, 526(2008) |
[15] | B. Holmes, M. Gittos, S. Maddox, A. Bahrami,Welding inspection and performance of joints in titanium. Paper presented at the NACE international corrosion 2013 conference, Orlando, 17-21 March 2013 |
[16] | J. Elmer, J. Wong, T. Ressler, Metall. Mater. Trans. A 29, 2761 (1998) |
[17] | S. Lathabai, B.L. Jarvis, K.J. Barton, Mater. Sci. Eng. , A 299, 81 (2001) |
[18] | H.H. Uhlig, R.W. Revie, Uhlig’s corrosion handbook (Wiley, New York, 2011), pp. 867-870 |
[19] | J. Vaughan, A. Alfantazi, J. Electrochem. Soc. 153, B6(2006) |
[20] | Z.B. Wang, H.X. Hu, C.B. Liu, Y.G. Zheng, Electrochim. Acta 135, 526 (2014) |
[21] | T.P. Cheng, J.T. Lee, W.T. Tsai, Electrochim. Acta 36, 2069 (1991) |
[22] | K. Juttner, Electrochim. Acta 35, 1501 (1990) |
[23] | C.N. Cao, J.Q. Zhang, An introduction to electrochemical impedance spectroscopy (Science Press, Beijing, 2002), pp. 45-48. (in Chinese??) |
[24] | M. Hoseini, A. Shahryari, S. Omanovic, J.A. Szpunar,Corros. Sci. 51, 3064(2009) |
[25] | M. Atapour, A. Pilchak, G.S. Frankel, J.C. Williams,Corros. Sci. 52, 3062(2010) |
[26] | A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, Y.T. Zhu,Scr. Mater. 51, 225(2004) |
[27] | H. Garbacz, M. Pisarek, K.J. Kurzydlowski,Biomol. Eng. 24, 559(2007) |
[28] | E.K. Sevidova, A.A. Simonova,Surf. Eng. Appl. Electrochem. 47, 162(2011) |
[29] | E.N. Codaro, R.Z. Nakazato, A.L. Horovistiz, L.M.F. Ribeiro, R.B. Ribeiro, L.R.O. Hein, Mater. Sci. Eng. , A 341, 202 (2003) |
[30] | C.S. Brossia, G.A. Cragnolino,Corros. Sci. 46, 1693(2004) |
[31] | S.Y. Yu, J.R. Scully, C.M. Vitus, J. Electrochem. Soc. 148, B68(2001) |
[1] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[2] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[3] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[4] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[5] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[6] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[7] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[8] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[9] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[10] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[11] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[12] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[13] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[14] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[15] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||