Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (4): 694-704.DOI: 10.1007/s40195-014-0103-x
• research-article • Previous Articles Next Articles
N. Alatorre1,2,3, R. R. Ambriz1(), B. Noureddine2,3, A. Amrouche4, A. Talha5, D. Jaramillo1
Received:
2013-11-05
Revised:
2013-12-20
Online:
2014-08-25
Published:
2014-10-16
N. Alatorre, R. R. Ambriz, B. Noureddine, A. Amrouche, A. Talha, D. Jaramillo. Tensile Properties and Fusion Zone Hardening for GMAW and MIEA Welds of a 7075-T651 Aluminum Alloy[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 694-704.
Add to citation manager EndNote|Ris|BibTeX
Material | Al | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Others |
---|---|---|---|---|---|---|---|---|---|---|
7075-T651* | 88.6 | 0.03 | 0.19 | 1.7 | 0.02 | 2.7 | 0.18 | 6.4 | 0.02 | 0.16 |
ER5356** | 95.04 | – | – | – | – | 4.96 | – | – | – | – |
Table 1 Chemical composition of the materials employed (wt%)
Material | Al | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Others |
---|---|---|---|---|---|---|---|---|---|---|
7075-T651* | 88.6 | 0.03 | 0.19 | 1.7 | 0.02 | 2.7 | 0.18 | 6.4 | 0.02 | 0.16 |
ER5356** | 95.04 | – | – | – | – | 4.96 | – | – | – | – |
Process | Voltage (V) | Current (A) | Feeding speed (mm/s) | Welding beads | Thermal efficiency | Heat input (J/mm) |
---|---|---|---|---|---|---|
GMAW | 23 | 142 | 110 | 3 | 0.80 | 725.7 |
MIEA | 25.4 | 203 | 180 | 1 | 0.95 | 1,360.6 |
Table 2 Welding parameters of GMAW and MIEA processes
Process | Voltage (V) | Current (A) | Feeding speed (mm/s) | Welding beads | Thermal efficiency | Heat input (J/mm) |
---|---|---|---|---|---|---|
GMAW | 23 | 142 | 110 | 3 | 0.80 | 725.7 |
MIEA | 25.4 | 203 | 180 | 1 | 0.95 | 1,360.6 |
Fig. 4 Grain structure of the 7075-T651 aluminum alloy showing second phase particles and representation of the grain structure to determine the grain size area: a three dimensional overview; b rolling (L) plane; c transverse to rolling (TL) plane; d short transverse (ST) plane
Welding technique | Joint area (mm2) | Fusion zone (mm2) | Dilution zone (mm2) | HAZ area (mm2) | Dilution fraction (%) | Porosity area (mm2) | Porosity ratio |
---|---|---|---|---|---|---|---|
GMAW | 55 | 102.0 | 20.5 | 445.4 | 20.0 | 1.68 | 0.0165 |
MIEA | 32 | 160.0 | 83.6 | 440.1 | 52.2 | 2.35 | 0.0147 |
Table 3 Welded joint dimensions of GMAW and MIEA processes
Welding technique | Joint area (mm2) | Fusion zone (mm2) | Dilution zone (mm2) | HAZ area (mm2) | Dilution fraction (%) | Porosity area (mm2) | Porosity ratio |
---|---|---|---|---|---|---|---|
GMAW | 55 | 102.0 | 20.5 | 445.4 | 20.0 | 1.68 | 0.0165 |
MIEA | 32 | 160.0 | 83.6 | 440.1 | 52.2 | 2.35 | 0.0147 |
Fig. 8 Grain structures of the welded joints in as welded condition: a fusion interface in GMAW; b weld metal in GMAW; c fusion interface in MIEA; d weld metal in MIEA
Fig. 9 Grain structure of the welded joints after post weld heat treatment: a fusion interface in GMAW; b weld metal in GMAW; c fusion interface in MIEA; d weld metal in MIEA
Material | E (GPa) | σ0.2 (MPa) | σmax (MPa) | σf (MPa) | εmax (%) | εf (%) | H (MPa) | n |
---|---|---|---|---|---|---|---|---|
Base metal (transverse) | 72.0 | 530 | 568 | 530 | 8.0 | 13.8 | 794 | 0.08 |
Base metal (longitudinal) | 72.2 | 549 | 600 | 581 | 8.0 | 11.3 | 729 | 0.07 |
GMAW weld joint | 68.0 | 163 | 262 | 262 | 3.4 | 3.4 | 647 | 0.25 |
MIEA weld joint | 67.2 | 165 | 260 | 260 | 2.8 | 2.8 | 677 | 0.25 |
GMAW + PWHT weld joint | 69.2 | 183 | 258 | 258 | 4.1 | 4.1 | 523 | 0.19 |
MIEA + PWHT weld joint | 71.0 | 342 | 400 | 400 | 2.0 | 2.0 | 707 | 0.14 |
Table 4 Mean tensile mechanical properties of base metal and the weld joints
Material | E (GPa) | σ0.2 (MPa) | σmax (MPa) | σf (MPa) | εmax (%) | εf (%) | H (MPa) | n |
---|---|---|---|---|---|---|---|---|
Base metal (transverse) | 72.0 | 530 | 568 | 530 | 8.0 | 13.8 | 794 | 0.08 |
Base metal (longitudinal) | 72.2 | 549 | 600 | 581 | 8.0 | 11.3 | 729 | 0.07 |
GMAW weld joint | 68.0 | 163 | 262 | 262 | 3.4 | 3.4 | 647 | 0.25 |
MIEA weld joint | 67.2 | 165 | 260 | 260 | 2.8 | 2.8 | 677 | 0.25 |
GMAW + PWHT weld joint | 69.2 | 183 | 258 | 258 | 4.1 | 4.1 | 523 | 0.19 |
MIEA + PWHT weld joint | 71.0 | 342 | 400 | 400 | 2.0 | 2.0 | 707 | 0.14 |
Fig. 12 Vickers hardness maps of the weld joints: a as welded for GMAW; b after post weld heat treatment for GMAW; c as welded for MIEA; d after post weld heat treatment for MIEA
Fig. 13 Weld thermal cycles of GMAW a & MIEA b processes, & continuous cooling transformation curve for 7075 aluminum alloy (starting from 475 °C) [19] c
Fig. 14 Load–depth curves of weld joints: a GMAW in as welded condition; b MIEA in as welded condition; c GMAW and MIEA after post weld heat treatment
Process | Weld metal (as weld) | HAZ (soft zone) | Weld metal (PWHT) | Base metal |
---|---|---|---|---|
GMAW | 81.4 ± 0.7 | 81.8 ± 0.4 | 82.4 ± 1.0 | 88.5 ± 1.6 |
MIEA | 85.9 ± 1.8 | 84.9 ± 0.5 | 84.0 ± 0.8 |
Table 5 Elastic modulus (GPa) of the base metal and weld joints obtained by instrumented indentation
Process | Weld metal (as weld) | HAZ (soft zone) | Weld metal (PWHT) | Base metal |
---|---|---|---|---|
GMAW | 81.4 ± 0.7 | 81.8 ± 0.4 | 82.4 ± 1.0 | 88.5 ± 1.6 |
MIEA | 85.9 ± 1.8 | 84.9 ± 0.5 | 84.0 ± 0.8 |
[1] | ASM, Handbook of Properties and Selection: Nonferrous Alloys and Special Purpose Materials(ASM International, Materials Park, 1990), p. 3470 |
[2] | ASTM B209, Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate(ASTM, West Conshohocken, 2010), pp. 1–29 |
[3] | S.P. Ringer, K. Hono, Mater. Charact. 44, 101(2000)10.1016/S1044-5803(99)00051-0 |
[4] | M. Nicolas, A. Deschamps, Acta Mater. 51, 6077(2003)10.1016/S1359-6454(03)00429-4 |
[5] | W.L. Dai, Mater. Lett. 57, 2447(2003)10.1016/S0167-577X(02)01262-4 |
[6] | G. Fu, F. Tian, H. Wang, J. Mater. Process. Technol. 180, 216(2006)10.1016/j.jmatprotec.2006.06.008 |
[7] | R.Y. Hwang, C.P. Chou, Scr. Mater. 38, 215(1997)10.1016/S1359-6462(97)00472-7 |
[8] | M. Temmar, M. Hadji, T. Sahraoui, Mater. Des. 32, 3532(2011)10.1016/j.matdes.2011.02.011 |
[9] | R.R. Ambriz, G. Barrera, R. García, Soldag. Insp. 11, 10(2006) |
[10] | S. Kou, Welding Metallurgy, 2nd edn. (Wiley, Hoboken, 2003), pp. 359–367 |
[11] | S.A. David, J.M. Vitek, Int. Mater. Rev. 34, 213(1989)10.1179/imr.1989.34.1.213 |
[12] | R.R. Ambriz, D. Chicot, N. Benseddiq, G. Mesmacque, S. de la Torre, Eur. J. Mech. A 30, 307(2011)10.1016/j.euromechsol.2010.12.007 |
[13] | G.D. Quinn, P.L. Patel, I. Lloyd, J. Res. Natl. Inst. Stand 107, 299(2002)10.6028/jres.107.023 |
[14] | M. Gao, C.R. Feng, R.P. Wei, Metall. Mater. Trans. A 29, 1145(1998)10.1007/s11661-998-0240-9 |
[15] | R.R. Ambriz, G. Barrera, R. García, V.H. López, Rev. Metall. 45, 42(2009)10.3989/revmetalm.0801 |
[16] | S. Kou, Welding Metallurgy, 2nd edn. (Wiley, Hoboken, 2003), p. 461 |
[17] | R.R. Ambriz, G. Barrera, R. García, V.H. López, Mater. Des. 31, 2978(2010)10.1016/j.matdes.2009.12.017 |
[18] | A. Schneider, V. Avilov, A. Gumenyuk, M. Rethmeier, Phys. Proc. 41, 4(2013)10.1016/j.phpro.2013.03.045 |
[19] | J.F. Chinella, Z. Guo, Army Res. Lab. (2011), p. 1–78 |
[20] | T. Gladman, Mater. Sci. Technol. 15, 30(1999)10.1179/026708399773002782 |
[21] | D. Chicot, F. Roudet, A. Zaoui, G. Louis, V. Lepingle, Mater. Chem. Phys. 119, 75(2010)10.1016/j.matchemphys.2009.07.033 |
[1] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[2] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[3] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
[4] | Jinyong Gao, Lijun Yang, Lei Cui, Peng Lu, Jun Yang, Yanjun Gao. Improving the Weld Formation and Mechanical Properties of the AA-5A06 Friction Pull Plug Welds by Axial Force Control [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 828-838. |
[5] | Guang-Da Sun, Li Zhou, Ren-Xiao Zhang, Ling-Yun Luo, Hao Xu, Hong-Yun Zhao, Ning Guo, Di Zhang. Effect of Sleeve Plunge Depth on Interface/Mechanical Characteristics in Refill Friction Stir Spot Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 551-560. |
[6] | Chenfan Yu, Yuan Zhong, Peng Zhang, Zhenjun Zhang, Congcong Zhao, Zhefeng Zhang, Zhijian Shen, Wei Liu. Effect of Build Direction on Fatigue Performance of L-PBF 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 539-550. |
[7] | Nan Xu, Ruo-Nan Feng, Wen-Feng Guo, Qi-Ning Song, Ye-Feng Bao. Effect of Zener-Hollomon Parameter on Microstructure and Mechanical Properties of Copper Subjected to Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 319-326. |
[8] | Guodong Hu, Pei Wang, Dianzhong Li, Yiyi Li. High-temperature Tensile Behavior in Coarse-grained and Fine-grained Nb-containing 25Cr-20Ni Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1455-1465. |
[9] | Jun-Lei Zhang, Han Liu, Yu-Lu Xie, Guang-Sheng Huang, Xiang Chen, Bin Jiang, Ai-Tao Tang, Fu-Sheng Pan. Microstructure Distribution and Tensile Anisotropy of Dissimilar Friction Stir Welded AM60 and AZ31 Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1487-1504. |
[10] | Hongduo Wang, Kuaishe Wang, Wen Wang, Yongxin Lu, Pai Peng, Peng Han, Ke Qiao, Zhihao Liu, Lei Wang. Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1556-1570. |
[11] | Jiahua Zhang, Yi Yang, Sheng Cao, Zhiqiang Cao, Dmytro Kovalchuk, Songquan Wu, Enquan Liang, Xi Zhang, Wei Chen, Fan Wu, Aijun Huang. Fine equiaxed β grains and superior tensile property in Ti-6Al-4V alloy deposited by coaxial electron beam wire feeding additive manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1311-1320. |
[12] | Dan Chen, Jinglong Li, Huaxia Zhao, Zhejun Tan, Jiangtao Xiong. Effect of Submillimeter Variation in Plunge Depth on Microstructure and Mechanical Properties of FSLW 2A12 Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 165-171. |
[13] | Hua Zhang, Chang-Yu Zhao, Qi-Long Guo, Rui-Sheng Yang, Li-Yuan Liu, San-Bao Lin. Microstructure and Corrosion Behavior of Friction Stir Welded Al Alloy Coated by In Situ Shot-Peening-Assisted Cold Spray [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 172-182. |
[14] | Gaoqiang Chen, Shuai Zhang, Yucan Zhu, Chengle Yang, Qingyu Shi. Thermo-mechanical Analysis of Friction Stir Welding: A Review on Recent Advances [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 3-12. |
[15] | Xiao-Song Feng, Song-Bin Li, Li-Na Tang, Hui-Min Wang. Refill Friction Stir Spot Welding of Similar and Dissimilar Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 30-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||