Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (2): 338-346.DOI: 10.1007/s40195-014-0051-5
• research-article • Previous Articles Next Articles
Received:
2013-10-09
Revised:
2013-12-06
Online:
2014-04-25
Published:
2014-05-07
Boqiong LI, Xing LU. Influence of Ti Powder Characteristics on the Mechanical Properties of Porous Ti Using Space Holder Technique[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 338-346.
Add to citation manager EndNote|Ris|BibTeX
Powder | Ti powder | Porous Ti |
---|---|---|
A | 0.50 | 0.95 |
B | 0.67–0.89 | 1.30 |
C | 0.76 | 1.10 |
Table 1 Oxygen Contents in different Ti powders and porous Ti samples made from different Ti powders (wt%)
Powder | Ti powder | Porous Ti |
---|---|---|
A | 0.50 | 0.95 |
B | 0.67–0.89 | 1.30 |
C | 0.76 | 1.10 |
Fig. 5 Nominal stress–strain curves during different testings of porous Ti samples made from different powders: a compression testing; b bending testing; c tension testing
Powder | Compressive strength (MPa) | Tensile strength (MPa) | Bending strength (MPa) | Compressive Young’s modulus (GPa) | Tensile Young’s modulus (GPa) |
---|---|---|---|---|---|
A | 200.00 ± 30.00 | 82.0 ± 5.7 | 433.92 ± 6.3 | 4.40 ± 0.33 | 4.80 ± 0.55 |
B | 135.68 ± 12.77 | 38.0 ± 6.0 | 284.00 ± 3.50 | 3.46 ± 0.21 | 2.58 ± 0.45 |
C | 186.81 ± 21.74 | 66.0 ± 24.7 | 350.20 ± 1.20 | 4.00 ± 0.24 | 3.60 ± 0.02 |
Table 2 Mechanical properties of porous Ti samples made from different Ti powders
Powder | Compressive strength (MPa) | Tensile strength (MPa) | Bending strength (MPa) | Compressive Young’s modulus (GPa) | Tensile Young’s modulus (GPa) |
---|---|---|---|---|---|
A | 200.00 ± 30.00 | 82.0 ± 5.7 | 433.92 ± 6.3 | 4.40 ± 0.33 | 4.80 ± 0.55 |
B | 135.68 ± 12.77 | 38.0 ± 6.0 | 284.00 ± 3.50 | 3.46 ± 0.21 | 2.58 ± 0.45 |
C | 186.81 ± 21.74 | 66.0 ± 24.7 | 350.20 ± 1.20 | 4.00 ± 0.24 | 3.60 ± 0.02 |
Fig. 6 SEM fractographs of the porous Ti made from powder A deformed by tension testing: a overall morphology; b feathery cleavage facets with secondary cracks (marked S); c intermediate magnification fractograph shows a few dimpled areas (marked D), the river pattern and fan-like cleaved facets and transcrystalline fracture along the colonies (marked T); d spherical attachment (marked SA) and cotton-shaped attachment (marked CA) on the macro-pore wall
Fig. 7 SEM fractographs of the porous Ti made from powder B deformed by tension testing: a overall morphology; b intermediate magnification fractograph showing the river pattern and fan-like cleaved facets; c feathery cleavage with secondary cracks along grain boundary (arrow); d terraced fracture surface with the macro-pore initiated failure (marked M), secondary cracks and attachments on the macro-pore wall; e a smooth cleavage facet with the macro-pore initiated failure and dimples along the grain boundaries; f a magnification smooth cleavage facet with micro-pore and the shear tip with microvoids
Fig. 8 SEM fractograph of the porous Ti made from powder C deformed by tension testing: a overall morphology; b intermediate magnification fractograph showing the macro-pore initiated failure, the river pattern and smooth fan-like cleaved facets with micro-pore and spherical attachment; c cleaved facets with cotton-shaped attachment and transcrystalline fracture along the colonies; d tear ridge with dimples
[1] | M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater Sci. 54, 397(2009)10.1016/j.pmatsci.2008.06.004 |
[2] | G.H. van Lenthe, M.M.M. Willems, N. Verdonschot, M.C.D. Malefijt, R. Huiskes, Acta Orthop. Scand. 73, 630(2002)10.1080/000164702321039589 |
[3] | H.L. Li, S.M. Oppenheimer, S.I. Stupp, D.C. Dunand, L.C. Brinson, Jpn. Mater. Trans. 45, 1124(2004)10.2320/matertrans.45.1124 |
[4] | G.LütjeringJ.C.Williams, Titianium, 2nd edn. (Springer-Verlag Berlin Heidelberg press, New York, 2007), pp. 20–195 |
[5] | I.-H. Oh, N. Nomura, N. Masahashi, S. Hanada, Scr. Mater. 49, 1197(2003)10.1016/j.scriptamat.2003.08.018 |
[6] | T. Traini, C. Mangano, R.L. Sammons, F. Mangano, A. Macchi, A. Piattelli, Dent. Mater. 24, 1525(2008)10.1016/j.dental.2008.03.029 |
[7] | C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, Scr. Mater. 45, 1147(2001)10.1016/S1359-6462(01)01132-0 |
[8] | M.V. Oliveira, L.C. Pereira, C.A.A. Cairo, Mater. Res. 5, 269(2002)10.1590/S1516-14392002000300009 |
[9] | V.I. Itin, V.E. Gyunter, S.A. Shabalovskaya, R.L.C. Sachdeva, Mater. Charact. 32, 179(1994)10.1016/1044-5803(94)90087-6 |
[10] | B.Q. Li, F. Yan, X. Lu, Mater. Sci. Eng. A 534, 43(2012)10.1016/j.msea.2011.11.028 |
[11] | B.Q. Li, C.Y. Wang, X. Lu, Mater. Des. 50, 613(2013)10.1016/j.matdes.2013.02.082 |
[12] | A. Nouri, P.D. Hodgson, C.E. Wen, Acta Biomater. 6, 1630(2010)10.1016/j.actbio.2009.10.005 |
[13] | M. Hakamada, T. Nomura, T. Kuromura, Y. Yamada, M. Mabuchi,Processing of porous aluminium by the spacer method. Paper presented at the 4th international conference on porous metals and metal foaming technology, Kyoto, Japan, 2005 p. 393 |
[14] | H.Q. Nguyen, D.A. Deporter, R.M. Pilliar, N. Valiquette, R. Yakubovich, Biomaterials 25, 865(2004)10.1016/S0142-9612(03)00607-0 |
[15] | A. Nouri, P.D. Hodgson, C.E. Wen, Mater. Sci. Eng. C 31, 921(2011)10.1016/j.msec.2011.02.011 |
[16] | B.Q. Li, D.Q. Wang, X. Lu, J. Dalian Railway Inst 25(1), 74(2004) |
[17] | J.C. Li, D.C. Dunand, Acta Mater. 59, 146(2011)10.1016/j.actamat.2010.09.019 |
[18] | D.J. Jorgensen, D.C. Dunand, Mater. Sci. Eng. A 527, 849(2010)10.1016/j.msea.2009.08.034 |
[19] | Y. Chino, D.C. Dunand, Acta Mater. 56, 105(2008)10.1016/j.actamat.2007.09.002 |
[20] | L.J.GibsonM.F.Ashby, Cellular solids: structure and properties, 2nd edn. (Cambridge University Press, Cambridge, 1997), pp. 189–195 |
[21] | C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, J. Mater. Res. 17, 2633(2002)10.1557/JMR.2002.0382 |
[22] | I.H. Oh, N. Nomura, S. Hanada, Mater. Trans. 43, 443(2002)10.2320/matertrans.43.443 |
[1] | Jun-Xiu Chen, Xiang-Ying Zhu, Li-Li Tan, Ke Yang, Xu-Ping Su. Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg-2Zn-xGd-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 205-216. |
[2] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[3] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
[4] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[5] | S. Bi, B. L. Xiao, Z. H. Ji, B. S. Liu, Z. Y. Liu, Z. Y. Ma. Dispersion and Damage of Carbon Nanotubes in Carbon Nanotube/7055Al Composites During High-Energy Ball Milling Process [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 196-204. |
[6] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[7] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[8] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[9] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[10] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[11] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[12] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[13] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[14] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[15] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||