Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (1): 1-11.DOI: 10.1007/s40195-013-0014-2
• research-article • Next Articles
Received:
2013-10-17
Revised:
2013-10-25
Online:
2014-02-25
Published:
2014-03-11
Dehai Ping. Review on ω Phase in Body-Centered Cubic Metals and Alloys[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 1-11.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic illustration of ideal ω formation from bcc structure: a a bcc lattice structure; b an ideal ω phase was based upon the collapse model of one pair of (111)bcc planes. The No. 1 layer moves up 1/2 × 1/6[111], and the No. 2 layer moves down 1/2 × 1/6[111], then the bcc structure becomes an ideal ω structure; c a hexagonal ideal ω lattice structure
Fig. 2 a Dark-field TEM image revealing high density of 1–3 nm-sized ω particles in a water-quenched Ti–30Nb–3Pd (wt%) sample. Only one variant of ω particles can be shown in the dark-field image. The particles have a uniform size distribution and are lying on one of {112} along one of 〈111〉 direction in the plane. b The corresponding selected area electron diffraction (SAED) pattern showing the bcc matrix and two variants of the ω phase
Fig. 3 High-resolution TEM lattice image showing that the distribution of a high density of fine ω particles formed in a water-quenched Ti–30Nb–3Pd (wt%) sample. Several ω particles are outlined by dashed circles. The image was taken with the incident electron beam parallel to the [\( \bar 1 \)13]β zone axis
Fig. 4 a Tensile stress–strain curves and the corresponding fracture surfaces of the as-cast Ti–30Nb and Ti–30Nb–3Pd (wt%) alloys. b, c The dark-field TEM images obtained from the above samples, respectively. The dark-field micrographs imaged in 〈112〉β directions clearly reveal the density, size, and distribution of fine ω particles formed in those two cast alloys
Fig. 5 A dark-field TEM image revealing the interaction between twin tips and fine ω particles in the furnace-cooled Ti–30Nb–3Pd alloy. All the bright spots are fine ω particles. Two twin tips are outlined by white dashed lines. The twinning boundaries are indicated by arrows
Fig. 6 a A bright-field TEM image showing that a twin plate is completely embedded in one β matrix grain. The two white arrows indicate the twin edge sides or twin tips. b, c High-resolution TEM images obtained from the left and right twin tip regions outlined by dashed lines in a, respectively
Fig. 7 Schematic illustration of a {112}〈111〉 twin nucleating inside one ω particle in the bcc matrix: a a bcc lattice structure projected along [1–10], the unit cells of bcc and an ideal ω phase were outlined in blue and red lines, respectively; b an ideal ω particle formed via martensitic transformation in bcc matrix; c a reversed martensitic transformation (ω → β) happened inside the ω particle. Two possibilities for the atom movement were indicated in red and blue arrows; d if the atoms follow those red arrows, then ω transforms back to bcc matrix; the blue arrow movement results in a {112}〈111〉-type twinning structure
Fig. 8 TEM observation results from an oil-quenched spring steel: a a bright-field image with misty contrast; b the corresponding dark-field image revealing high density of nanoscale particles. A SAED pattern was inset in the middle, and an enlargement of a local region in the dark-field image was also inset
Fig. 9 a A SAED pattern of the [\( \bar 1 \)13]α zone axis from the oil-quenched spring steel and followed by 400 °C aging for 2 h. In this sample, the volume fraction of the second phase is much less than that in the oil-quenched state. b The [\( \bar 1 \)13]α zone axis diffraction pattern obtained from the region shown in Fig. 8. The second phase was indexed as the ω phase based on the results in β-type Ti alloys. The ω phase has a primitive hexagonal structure. c, d [011]α and [012]α zone axes diffraction patterns, respectively. It is clear that the (10\( \bar 1 \)0)ω//(\( \bar 1 \)2\( \bar 1 \))α
Fig. 10 A hexagonal atomic structure model of the ω phase. It is an AB2 type structure with a unit cell containing three atoms. At A layer, one atom position is 000. At B layer, there are two atoms: 2/3 1/3 1/2; 1/3 2/3 1/2. Here, both A and B layers are the same iron atoms
Fig. 11 a A bright-field TEM image of the [\( \bar 1 \)13]α zone axis from the oil-quenched spring steel and followed by 400 °C aging for 2 h. In this sample, the volume fraction of the ω phase is much less than that in the oil-quenched state. b The corresponding high-resolution TEM image clearly reveals the contrast and lattice fringes of the ω particle
Fig. 12 a A {112}〈111〉-type twinning structure morphology in an oil-quenched spring steel. b The {112}〈111〉-type twinning diffraction pattern with the ω phase
[1] | P.D. Frost, W.M. Parris, L.L. Hirsch, J.R. Doig, C.M. Schwartz, Trans. Am. Soc. Met. 46, 1056(1954) |
[2] | B.A. Hatt, J.A. Roberts, G.I. Williams, Nature 180, 1406(1957)10.1038/1801406a0 |
[3] | B.A. Hatt, J.A. Roberts, Acta Metall. 8, 575(1960)10.1016/0001-6160(60)90112-7 |
[4] | B.S. Hickman, J. Mater. Sci. 4, 554(1969)10.1007/BF00550217 |
[5] | S.K. Sikka, Y.K. Vohra, R. Chidambaram, Prog. Mater. Sci. 27, 245(1982)10.1016/0079-6425(82)90002-0 |
[6] | L.M. Hsiung, D.H. Lassila, Acta Mater. 48, 4851(2000)10.1016/S1359-6454(00)00287-1 |
[7] | J.M. Silcock, Acta Metall. 6, 481(1958)10.1016/0001-6160(58)90111-1 |
[8] | S.L. Sass, Acta Metall. 17, 813(1969)10.1016/0001-6160(69)90100-X |
[9] | A.T. Balcerzak, S.L. Sass, Metall. Trans. 3, 1601(1972)10.1007/BF02643051 |
[10] | T.S. Kuan, R.R. Ahrens, S.L. Sass, Metall. Trans. A 6, 1767(1975)10.1007/BF02642306 |
[11] | B. Tang, Y.W. Cui, H. Chang, H. Kou, J. Li, L. Zhou, Comput. Mater. Sci. 53, 187(2012)10.1016/j.commatsci.2011.09.011 |
[12] | H.E. Cook, Acta Metall. 21, 1445(1973)10.1016/0001-6160(73)90093-X |
[13] | C.W. Dawson, S.L. Sass, Metall. Trans. 1, 2225(1970)10.1007/BF02643439 |
[14] | D.L. Moffat, D.C. Larbalestier, Metall. Trans. A 19, 1677(1988)10.1007/BF02645135 |
[15] | R.M. Wood, Acta Metall. 11, 907(1963)10.1016/0001-6160(63)90060-9 |
[16] | Y.K. Vohra, E.S.K. Menon, S.K. Sikka, R. Krishnan, Acta Metall. 29, 457(1981)10.1016/0001-6160(81)90171-1 |
[17] | H. Nishizawa, E. Sukedai, W. Liu, H. Hashimoto, Mater. Trans. JIM 39, 609(1998) |
[18] | G.K. Dey, R. Tewari, S. Banerjee, G. Jyoti, S.C. Gupta, K.D. Joshi, S.K. Sikka, Acta Mater. 52, 5243(2004)10.1016/j.actamat.2004.07.008 |
[19] | J.O. Stiegler, J.T. Houston, M.L. Picklesimer, J. Nucl. Mater. 11, 32(1964)10.1016/0022-3115(64)90118-7 |
[20] | B. Zhang, J. Wang, X. Wan, W. Chen, Scripta Metall. Mater. 30, 399(1994)10.1016/0956-716X(94)90593-2 |
[21] | E. Sukedai, D. Yoshimitsu, H. Matsumoto, H. Hashimoto, M. Kiritani, Mater. Sci. Eng. A 350, 133(2003)10.1016/S0921-5093(02)00714-1 |
[22] | A.V. Dobromyslov, V.A. Elkin, Metall. Mater. Trans. A 30, 231(1999)10.1007/s11661-999-0211-9 |
[23] | Y. Ohmori, T. Ogo, K. Nakai, S. Kobayashi, Mater. Sci. Eng. A 312, 182(2001)10.1016/S0921-5093(00)01891-8 |
[24] | E. Sukedai, M. Shimoda, H. Nishizawa, Y. Nako, Mater. Trans. 52, 324(2011)10.2320/matertrans.MB201017 |
[25] | J.A. Feeney, M.J. Blackburn, Metall. Trans. 1, 3309(1970)10.1007/BF02642025 |
[26] | D. de Fontaine, Acta Metall. 18, 275(1970)10.1016/0001-6160(70)90035-0 |
[27] | F.R. Brotzen, E.L. Harmon, A.R. Troiano, J. Met. 7, 413(1955) |
[28] | D.H. Ping, Y. Mitarai, F.X. Yin, Scripta Mater. 52, 1287(2005)10.1016/j.scriptamat.2005.02.029 |
[29] | D.H. Ping, C.Y. Cui, F.X. Yin, Y. Yamabe-Mitarai, Scripta Mater. 54, 1305(2006)10.1016/j.scriptamat.2005.12.022 |
[30] | D.H. Ping, Y. Yamabe-Mitarai, C.Y. Cui, F.X. Yin, M.A. Choudhry, Appl. Phys. Lett. 93, 151911(2008)10.1063/1.3002295 |
[31] | C.Y. Cui, D.H. Ping, J. Alloy. Compd. 471, 248(2009)10.1016/j.jallcom.2008.03.057 |
[32] | A.B. Greninger, Nature 135, 916(1935)10.1038/135916c0 |
[33] | J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39, 1(1995)10.1016/0079-6425(94)00007-7 |
[34] | S. Mahajan, G.Y. Chin, Acta Metall. 21, 1353(1973)10.1016/0001-6160(73)90085-0 |
[35] | A.W. Sleeswyk, Philos. Mag. 29, 407(1974)10.1080/14786437408213281 |
[36] | S.Q. Wu, D.H. Ping, Y. Yamabe-Mitarai, T. Kitashima, G.P. Li, R. Yang, J. Alloy. Compd. 577, S423(2013)10.1016/j.jallcom.2011.12.152 |
[37] | S.Q. Wu, D.H. Ping, Y. Yamabe-Mitarai, W.L. Xiao, Y. Yang, Q.M. Hu, G.P. Li, R. Yang, Acta Mater. 62, 122(2014)10.1016/j.actamat.2013.09.040 |
[38] | A.G. Crocker, Acta Metall. 10, 113(1962)10.1016/0001-6160(62)90056-1 |
[39] | R.L. Patterson, C.M. Wayman, Acta Metall. 12, 1306(1964)10.1016/0001-6160(64)90119-1 |
[40] | C.J. Barton, Acta Metall. 17, 1085(1969)10.1016/0001-6160(69)90053-4 |
[41] | H.Y. Lee, H.W. Yen, H.T. Chang, J.R. Yang, Scripta Mater. 62, 670(2010)10.1016/j.scriptamat.2010.01.022 |
[42] | D.H. Jack, K.H. Jack, Mater. Sci. Eng. 11, 1(1973)10.1016/0025-5416(73)90055-4 |
[43] | D.H. Ping, W.T. Geng, Mater. Chem. Phys. 139, 830(2013)10.1016/j.matchemphys.2013.02.040 |
[44] | G.R. Srinivasan, C.M. Wayman, Acta Metall. 16, 609(1968)10.1016/0001-6160(68)90135-1 |
[45] | Y.Y. Song, D.H. Ping, F.X. Yin, X.Y. Li, Y.Y. Li, Mater. Sci. Eng. A 527, 614(2010)10.1016/j.msea.2009.08.022 |
[46] | B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, Acta Mater. 59, 5845(2011)10.1016/j.actamat.2011.05.061 |
[47] | C. Lerchbacher, S. Zinner, H. Leitner, Micron 43, 818(2012)10.1016/j.micron.2012.02.005 |
[48] | F.G. Caballero, M.K. Miller, C. Garcia-Mateo, Metall. Mater. Trans. A 42, 3660(2011)10.1007/s11661-011-0699-7 |
[49] | K. Nuttall, D. Faulkner, J. Nucl. Mater. 67, 131(1977)10.1016/0022-3115(77)90169-6 |
[50] | A.F. Yedneral, M.D. Perkas, Fiz. Met. Metalloved. 33, 315(1972) |
[1] | Jun-Xiu Chen, Xiang-Ying Zhu, Li-Li Tan, Ke Yang, Xu-Ping Su. Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg-2Zn-xGd-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 205-216. |
[2] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[3] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[4] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[5] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[6] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[7] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[8] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[9] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[10] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[11] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[12] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[13] | Rui-Xuan Li, Jun-Wei Qiao, Peter K. Liaw, Yong Zhang. Preternatural Hexagonal High-Entropy Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1033-1045. |
[14] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[15] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||