Please wait a minute...
Acta Metallurgica Sinica(English letters)  2019, Vol. 32 Issue (12): 1470-1482    DOI: 10.1007/s40195-019-00963-7
Orginal Article Current Issue | Archive | Adv Search |
Corrosion and Cavitation Erosion Behaviours of Cast Nickel Aluminium Bronze in 3.5% NaCl Solution with Different Sulphide Concentrations
Qi-Ning Song1(), Nan Xu1, Yao Tong1, Chen-Ming Huang1, Shou-Yu Sun1, Chen-Bo Xu1, Ye-Feng Bao1, Yong-Feng Jiang1, Yan-Xin Qiao2, Zhi-Yuan Zhu2, Zheng-Bin Wang3
1 College of Mechanical and Electrical Engineering, Hohai University, 200 Jinling North Road, Changzhou 213022, China
2 College of Materials Science and Engineering, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212003, China
3 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, China
Download:  HTML  PDF(4621KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of sulphide (Na2S) concentration (SC) on the corrosion and cavitation erosion behaviours of a cast nickel aluminium bronze (NAB) in 3.5% NaCl solution is investigated in this study. The results show that when the SC exceeds 50 ppm, the hydrogen evolution reaction dominates the cathodic process, and a limiting current region appears in the anodic branch of the polarisation curve due to the formation of a copper sulphide film, which is a diffusion-controlled process. After long-term immersion, the increased mass loss rate of NAB with the sulphide additions of 20 and 50 ppm is attributed to the less protective films, which contains a mixture of copper oxides and sulphides. Moreover, NAB undergoes severe localised corrosion (selective phase corrosion, SPC) at the β′ phases and eutectoid microstructure α + κIII. By comparison, NAB undergoes general corrosion and a copper sulphide film is formed in 100 and 200 ppm sulphide solutions. Cavitation erosion greatly increases the corrosion rate of NAB in all solutions and causes a negative potential shift in 3.5% NaCl solution due to the film destruction. However, a positive potential shift occurs in the solutions with SC higher than 50 ppm due to the accelerated mass transfer of the cathodic process. The cavitation erosion mass loss rate of NAB increases with the increase of SC. The occurrence of severe SPC decreases the phase boundary cohesion and causes brittle fracture under the cavitation impact. The corrosion-enhanced erosion is the most predominant factor for the cavitation erosion damage when the SC exceeds 50 ppm.

Key words:  Nickel aluminium bronze      Sulphide      Corrosion      Cavitation erosion      Synergy     
Received:  27 May 2019      Published:  25 November 2019

Cite this article: 

Qi-Ning Song, Nan Xu, Yao Tong, Chen-Ming Huang, Shou-Yu Sun, Chen-Bo Xu, Ye-Feng Bao, Yong-Feng Jiang, Yan-Xin Qiao, Zhi-Yuan Zhu, Zheng-Bin Wang. Corrosion and Cavitation Erosion Behaviours of Cast Nickel Aluminium Bronze in 3.5% NaCl Solution with Different Sulphide Concentrations. Acta Metallurgica Sinica(English letters), 2019, 32(12): 1470-1482.

URL: 

http://www.amse.org.cn/EN/10.1007/s40195-019-00963-7     OR     http://www.amse.org.cn/EN/Y2019/V32/I12/1470

Fig. 1  Schematic diagram of the ultrasonically vibrating equipment for cavitation erosion test. 1: water inlet; 2: cooling system; 3: Pt electrode; 4: reference electrode; 5: amplitude transformer; 6: transducer; 7: horn; 8: sample; 9: water outlet; 10: ultrasonic generator
Fig. 2  Optical microstructure of the cast NAB
Fig. 3  Polarisation curves of NAB in 3.5% NaCl solutions with different SCs
Fig. 4  a Mass loss, b film weight results of NAB after immersion for different periods in 3.5% NaCl solutions with different SCs
Fig. 5  Surface morphologies of NAB after immersion for 7 days in 3.5% NaCl solutions with SCs of a, b 0 ppm, c, d 20 ppm, e, f 50 ppm
Fig. 6  Surface morphologies of NAB after immersion for 7 days in 3.5% NaCl solutions with SCs of a, b 100 ppm, c, d 200 ppm
Solutions (SC) Areas O Al Ni Fe Mn Cu Cl S
0 ppm 1 1.84 8.44 13.53 10.28 0.57 64.56 0.48 -
2 3.60 9.48 9.10 8.61 1.44 66.51 1.27 -
3 12.40 14.01 4.42 3.04 0.30 63.40 2.43 -
20 ppm 4 5.03 2.31 7.56 3.38 0.10 72.42 4.82 4.37
5 2.36 2.27 4.64 4.49 0.77 81.39 0.81 3.26
50 ppm 6 11.89 1.42 1.86 1.42 0.57 67.84 - 15.00
7 7.59 - 1.68 3.35 0.77 71.85 - 13.94
8 8.47 2.47 3.80 4.53 1.86 69.59 - 9.28
100 ppm 9 - - - 1.08 0.58 78.12 - 20.22
10 - - - 1.10 0.89 76.66 - 21.35
200 ppm 11 - - 0.59 1.25 1.27 77.65 - 19.24
12 - - - 0.87 - 80.30 - 18.83
Table 1  Chemical compositions of the corrosion products located on different areas in Figs. 5 and 6 (wt%)
Fig. 7  XRD patterns of NAB after immersion for 7 days in 3.5% NaCl solutions with different SCs
Fig. 8  Cross-sectional morphologies of NAB after immersion for 7 days in 3.5% NaCl solutions with SCs of a, b 0 ppm, c 20 ppm, d 50 ppm, e 100 ppm, f 200 ppm
Fig. 9  Cumulative mass loss results of NAB after cavitation erosion in 3.5% NaCl solutions with different SCs for 5 h
Fig. 10  OCP results of NAB under alternate quiescence and cavitation erosion conditions in 3.5% NaCl solutions with different SCs
Fig. 11  Schematic diagrams for OCP and current density evolution under alternate conditions of quiescence and cavitation erosion: a with, b without a protective film on the material surface under quiescence condition
Fig. 12  Polarisation curves of NAB under quiescence and cavitation erosion conditions in 3.5% NaCl solutions with different SCs
Conditions 3.5% NaCl solution + x ppm Na2S
0 20 50 100 200
Quiescence
I (A cm-2) 6.8175?×?10-6 3.1426?×?10-6 2.7630?×?10-6 2.5147?×?10-6 7.0212?×?10-6
Ecorr (mV) -?277 -?341 -?950 -?963 -?962
Cavitation
I (A cm-2) 3.0678?×?10-5 2.6561?×?10-4 5.5525?×?10-4 8.1464?×?10-4 8.6688?×?10-4
Ecorr (mV) -?290 -?364 -?746 -?790 -?837
Table 2  Electrochemical parameters obtained from the polarisation curves in Fig. 12 for NAB in 3.5% NaCl solutions with different SCs
Solutions (SC) Mass loss rate (mg cm-2 h-1) Percentages (%)
T E C ?E ?C S E/T C/T S/T ?E/T ?C/T
0 ppm 1.4722 0.9111 0.0163 0.4879 0.0570 0.5448 61.89 1.11 37.01 33.14 3.87
20 ppm 1.9611 0.9111 0.0075 0.4154 0.6266 1.0420 46.46 0.38 53.16 21.21 31.95
50 ppm 3.9611 0.9111 0.0066 1.7226 1.3189 3.0415 23.00 0.17 76.83 43.54 33.30
100 ppm 5.2278 0.9111 0.0060 2.3713 1.9387 4.3100 17.43 0.11 82.46 45.37 37.08
200 ppm 8.0778 0.9111 0.0168 5.0994 2.0527 7.1521 11.28 0.21 88.51 63.10 25.41
Table 3  Cavitation erosion-corrosion synergy results for NAB in 3.5% NaCl solutions with different SCs
Fig. 13  Surface morphologies of NAB after cavitation erosion for 5 h in a distilled water and 3.5% NaCl solutions with SCs of b 0 ppm, c 20 ppm, d 50 ppm, e 100 ppm, f 200 ppm
[1] J.A. Wharton, R.C. Barik, G. Kear, R.J.K. Wood, K.R. Stokes, F.C. Walsh, Corros. Sci. 47, 3336(2005)
[2] A. Schussler, H.E. Exner, Corros. Sci. 34, 1793(1993)
[3] A.H. Tuthill, Mater. Perform. 26, 12(1987)
[4] B.G. Ateya, E.A. Ashour, S.M. Sayed, J. Electrochem. Soc. 141, 71(1994)
[5] A.L. Ma, S.L. Jiang, Y.G. Zheng, W. Ke, Corros. Sci. 91, 245(2015)
[6] W.A. Badawy, M. El-Rabiee, N.H. Helal, H. Nady, Electrochim . Acta 71, 50 (2012)
[7] G. Šekularac, I. Milošev, Corros. Sci. 144, 54(2018)
[8] A.S. Hamdy, M.A. Shoeib, Y. Barakat, Electrochim . Acta 52, 7068 (2007)
[9] J.L. Tang, X. Yang, Y.Y. Wang, H. Wang, Y. Xiao, M. Apreutesei, Z. Nie, B. Normand, Metals 9, 294 (2019)
[10] X. Yang, C. Du, H. Wan, Z. Liu, X. Li, Appl. Surf. Sci. 458, 198(2018)
[11] K. Rahmouni, M. Keddam, A. Srhiri, H. Takenouti, Corros. Sci. 47, 3249(2005)
[12] N.K. Awad, E.A. Ashour, N.K. Allam, Appl. Surf. Sci. 346, 158(2015)
[13] S.J. Yuan, S.O. Pehkonen, Corros. Sci. 49, 1276(2017)
[14] L.E. Eiselstein, B.C. Syrett, S.S. Wing, R.D. Caligiuri, Corros. Sci. 23, 223(1983)
[15] S.M. Sayed, E.A. Ashour, G.I. Youssef, Chem. Phys. 78, 825(2003)
[16] Q.N. Song, N. Xu, Y.F. Bao, Y.F. Jiang, W. Gu, Y.G. Zheng, Y.X. Qiao, Acta Metall. Sin. (Engl. Lett.) 30, 712(2017)
[17] Y.Y. Song, H.W. Shi, J. Wang, F.C. Liu, E.H. Han, W. Ke, G.X. Jie, J. Wang, H.J. Huang, Acta Metall. Sin. (Engl. Lett.) 30, 1201(2017)
[18] M. Hazra, K.P. Balan, Eng. Fail. Anal. 70, 141(2016)
[19] S.Z. Li, X.X. Jiang, H.Y. Bi, S. Li, Wear 225-229, 1025(1999)
[20] E.A. Ashour, L.A. Khorshed, G.I. Youssef, H.M. Zakria, T.A. Khalifa, Mater. Sci. Appl. 5, 10(2014)
[21] N. Taniguchi, M. Kawasaki, J. Nucl. Mater. 379, 154(2008)
[22] Q. Luo, Q. Zhang, Z.B. Qin, Z. Wu, B. Shen, L. Liu, W.B. Hu, J. Alloys Compd. 747, 861(2018)
[23] Y.X. Qiao, S. Wang, B. Liu, Y.G. Zheng, H.B. Li, Z.H. Jiang, Acta Metall. Sin. 52, 233(2016)
doi: 10.11900/0412.1961.2015.00282
[24] C.T. Kwok, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 290, 145 (2000)
[25] C.T. Kwok, H.C. Man, L.K. Leung, Wear 211, 84 (1997)
[26] ASTM G32-10, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus (2010)
[27] F. Hasan, G.W. Lorimer, N. Eidley, Metall. Trans. A 13A, 1337 (1982)
[28] E.A. Culpan, G. Rose, J. Mater. Sci. 13, 1647(1978)
[29] D.C. Kong, C.F. Dong, X.Q. Ni, A.N. Xu, C. He, K. Xiao, X.G. Li, Mater. Corros. 68, 1070(2017)
[30] J. Chen, D.W. Shoesmith, J. Electrochem. Soc. 157, C338(2010)
[31] J.A. Wharton, K.R. Stokes, Electrochim . Acta 53, 2463 (2008)
[32] G. Kear, B.D. Barker, F.C. Walsh, Corros. Sci. 46, 109(2004)
[33] T. Martino, J. Smith, J. Chen, Z. Qin, J.J. Noël, D.W. Shoesmith, J. Electrochem. Soc. 166, C9(2019)
[34] J. Chen, Z. Qin, L. Wu, J.J. Noël, D.W. Shoesmith, Corros. Sci. 87, 233(2014)
[35] J. Chen, Z. Qin, D.W. Shoesmith, Electrochim . Acta 56, 7854 (2011)
[36] Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Corrosion 71, 606 (2015)
[37] T. Martino, R. Partovi-Nia, J. Chen, Z. Qin, D.W. Shoesmith, Electrochim . Acta 127, 439 (2014)
[38] B.C. Syrett, Corros. Sci. 21, 187(1981)
[39] Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Corros. Sci. 92, 95(2015)
[40] S. Neodo, D. Carugo, J.A. Wharton, K.R. Stokes, J. Electroanal. Chem. 695, 38(2013)
[41] E.A. Culpan, G. Rose, Br. Corros. J. 14, 160(1979)
[42] Y.G. Zheng, S.Z. Luo, W. Ke, Wear 262, 1308 (2007)
[43] Y.G. Zheng, S.Z. Luo, W. Ke, Tribol. Int. 41, 1181(2008)
[44] Y.X. Qiao, Z.H. Tian, X. Cai, J. Chen, Y.X. Wang, Q.N. Song, H.B. Li, Tribol. Lett. 67, 1(2019)
[45] Q.N. Song, Y.G. Zheng, S.L. Jiang, D.R. Ni, Z.Y. Ma, Corrosion 69, 1111 (2013)
[1] Yu-Fen Zhang, Sha-Wei Tang, Tie-Gui Lin, Guang-Yi Liu, Jin Hu. Corrosion Properties of Calcium Stearate-Based Hydrophobic Coatings on Anodized Magnesium Alloy[J]. 金属学报英文版, 2019, 32(9): 1111-1121.
[2] Chao Xiang, Zhi-Ming Zhang, Hua-Meng Fu, En-Hou Han, Jian-Qiu Wang, Hai-Feng Zhang, Guo-Dong Hu. Microstructure, Mechanical Properties, and Corrosion Behavior of MoNbFeCrV, MoNbFeCrTi, and MoNbFeVTi High-Entropy Alloys[J]. 金属学报英文版, 2019, 32(9): 1053-1064.
[3] Ying Han, Hong-Rui Wang, Yun-Dong Cao, Wen-Tao Hou, Shu-Jun Li. Improved Corrosion Resistance of Selective Laser Melted Ti-5Cu Alloy Using Atomized Ti-5Cu Powder[J]. 金属学报英文版, 2019, 32(8): 1007-1014.
[4] Miao-Ran Liu, Xiao Lu, Qi Yin, Chen Pan, Chuan Wang, Zhen-Yao Wang. Effect of Acidified Aerosols on Initial Corrosion Behavior of Q235 Carbon Steel[J]. 金属学报英文版, 2019, 32(8): 995-1006.
[5] Jing-Jing Liao, Zhong-Bo Yang, Shao-Yu Qiu, Qian Peng, Zheng-Cao Li, Ming-Sheng Zhou, Hong Liu. Corrosion of New Zirconium Claddings in 500 °C/10.3 MPa Steam: Effects of Alloying and Metallography[J]. 金属学报英文版, 2019, 32(8): 981-994.
[6] Qiu-Shi Li, Shun-Zhong Luo, Xu-Teng Xing, Jing Yuan, Xin Liu, Ji-Hui Wang, Wen-Bin Hu. Effect of Deep Sea Pressures on the Corrosion Behavior of X65 Steel in the Artificial Seawater[J]. 金属学报英文版, 2019, 32(8): 972-980.
[7] Tian-Hui Hu, Hong-Wei Shi, Tao Wei, Shi-Hua Fan, Fu-Chun Liu, En-Hou Han. Corrosion Protection of AA2024-T3 by Cerium Malate and Cerium Malate-Doped Sol-Gel Coatings[J]. 金属学报英文版, 2019, 32(7): 913-924.
[8] Jie Wei, Chang-Gang Wang, Xin Wei, Xin Mu, Xiao-Yan He, Jun-Hua Dong, Wei Ke. Corrosion Evolution of Steel Reinforced Concrete Under Simulated Tidal and Immersion Zones of Marine Environment[J]. 金属学报英文版, 2019, 32(7): 900-912.
[9] Yin Qi, Wang Zhen-Yao, Liu Miao-Ran, Pan Chen. Synergistic Effect of NaCl and SO2 on the Initial Atmospheric Corrosion of Zinc Under Wet-Dry Cyclic Conditions[J]. 金属学报英文版, 2019, 32(6): 780-796.
[10] Tian-Yi Sun, Yan-Jun Guo, Yi-Ming Jiang, Jin Li. Effect of Short-Time Aging on the Pitting Corrosion Behavior of a Novel Lean Duplex Stainless Steel 2002[J]. 金属学报英文版, 2019, 32(6): 755-763.
[11] Li Yang, Zhang Shang-Zhou, Qiu Jian-Xun, He Yong-Yong, Xiu Jun-Jie, Ye Qian-Wen, Liu Zhong-Li. Effect of Electric Potentials on Microstructure, Corrosion and Wear Characteristic of the Nitrided Layer Prepared on 2Cr13 Stainless Steel by Plasma Nitriding[J]. 金属学报英文版, 2019, 32(6): 733-745.
[12] Barros André, Cruz Clarissa, P. Silva Adrina, Cheung Noé, Garcia Amauri, Rocha Otávio, Moreira Antonio. Horizontally Solidified Al-3 wt%Cu-(0.5 wt%Mg) Alloys: Tailoring Thermal Parameters, Microstructure, Microhardness, and Corrosion Behavior[J]. 金属学报英文版, 2019, 32(6): 695-709.
[13] Da-Zheng Zhang, Xiu-Hua Gao, Lin-Xiu Du, Hong-Xuan Wang, Zhen-Guang Liu, Ning-Ning Yang, R. D. K. Misra. Corrosion Behavior of High-Strength Steel for Flexible Riser Exposed to CO2-Saturated Saline Solution and CO2-Saturated Vapor Environments[J]. 金属学报英文版, 2019, 32(5): 607-617.
[14] Wen-Bo Li, Lan-Lan Liu, Ying-Fei Yang, Sheng-Long Zhu, Fu-Hui Wang. Hot Corrosion Behavior of SiO2-Al2O3-Glass Composite Coating on Ti-47Al-2Cr-2Nb Alloy: Diffusion Barrier for S and Cl[J]. 金属学报英文版, 2019, 32(5): 599-606.
[15] Canshuai Liu, Jianqiu Wang, Zhiming Zhang, En-Hou Han, Wei Liu, Dong Liang, Zhongtian Yang. Characterization of Corrosion Behavior of Irradiated X65 Low Carbon Steel in Aerobic and Unsaturated Gaomiaozi Bentonite[J]. 金属学报英文版, 2019, 32(4): 506-516.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About AMSE
Privacy Statement
Terms & Conditions
Editorial Office: Acta Metallurgica Sinica(English Letters), 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-024-83978879
E-mail:ams@imr.ac.cn

Copyright © 2016 AMSE, All Rights Reserved.