Please wait a minute...
Acta Metallurgica Sinica(English letters)  2019, Vol. 32 Issue (12): 1449-1458    DOI: 10.1007/s40195-019-00917-z
Orginal Article Current Issue | Archive | Adv Search |
Effects of Dissimilar Alumina Particulates on Microstructure and Properties of Cold-Sprayed Alumina/A380 Composite Coatings
Xiang Qiu1,2, Naeem ul Haq Tariq1,3,4, Lu Qi1,2, Jun-Rong Tang1,2, Xin-Yu Cui1, Hao Du1, Ji-Qiang Wang1(), Tian-Ying Xiong1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China
4 Department of Metallurgy and Materials Engineering, Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
Download:  HTML  PDF(2961KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this study, alumina/A380 composite coatings were fabricated by cold spray. The influence of alumina particulates’ morphology (spherical and irregular) and content on the deposition behavior of the coatings (including surface roughness, surface residual stress, cross-sectional microstructure and microhardness) was investigated. Results revealed that the spherical alumina mainly shows micro-tamping effect during deposition, which result in remarkable low surface roughness and porosity of the coatings. In addition, very low deposition efficiency and good interfacial bonding between the coating and the substrate were achieved. For irregular alumina particles, the embedding of ceramic particulates in the coating was dominant during deposition process, resulting in high retention in the final deposit. However, it showed limited influence on porosity, surface roughness and interfacial bonding of the deposit. The coatings containing irregular alumina particulates exhibited much higher microhardness than those containing spherical alumina due to the higher load-bearing capacity of deposited alumina.

Key words:  Cold spray      Alumina particles      Microstructure      Micro-tamping effect      Embedding effect     
Received:  21 February 2019      Published:  25 November 2019

Cite this article: 

Xiang Qiu, Naeem ul Haq Tariq, Lu Qi, Jun-Rong Tang, Xin-Yu Cui, Hao Du, Ji-Qiang Wang, Tian-Ying Xiong. Effects of Dissimilar Alumina Particulates on Microstructure and Properties of Cold-Sprayed Alumina/A380 Composite Coatings. Acta Metallurgica Sinica(English letters), 2019, 32(12): 1449-1458.

URL: 

http://www.amse.org.cn/EN/10.1007/s40195-019-00917-z     OR     http://www.amse.org.cn/EN/Y2019/V32/I12/1449

Fig. 1  Residual stress measurement: a the detectors of the stress analyzer; b data analysis of detector 1; c data analysis of detector 2; d elliptical fitting of data from b and c
Fig. 2  Morphologies of a A380 powders; b S-Al2O3 powders; c I-Al2O3 powders; d particle size distributions
Fig. 3  a Laser confocal scanning microscope graphs of surface morphology; b average surface roughness of the coatings
Fig. 4  Representative cross-sectional SEM micrographs of a pure A380 deposits; b S-Coatings and c I-Coatings at different magnifications
Fig. 5  Porosity of the pure A380 and composite coatings
Fig. 6  Volume fraction of alumina deposited in the coatings as compared to the feedstock powder blend
Fig. 7  Surface residual stresses of the coatings
Fig. 8  Representative SEM images of the indentation of a pure A380 deposits; b S-Coatings and c I-Coatings; d the microhardness values of coatings
Fig. 9  Schematic diagrams of deposition behavior for S- and I-alumina coatings
[1] T. Peat, A. Galloway, A. Toumpis, P. McNutt, N. Iqbal, Appl. Surf. Sci. 396, 1635(2017)
[2] M.R. Rokni, C.A. Widener, O.C. Ozdemir, G.A. Crawford, Sur. Coat. Technol. 309, 641(2017)
[3] H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Acta Mater. 51, 4379(2003)
doi: 10.1016/S1359-6454(03)00274-X
[4] R. Jenkins, S. Yin, B. Aldwell, M. Meyer, R. Lupoi, J. Mater. Sci. Technol. 35, 427(2019)
[5] H. Assadi, H. Kreye, F. Gärtner, T. Klassen, Acta Mater. 116, 382(2016)
[6] Y. Tao, T. Xiong, C. Sun, H. Jin, H. Du, T. Li, Appl. Surf. Sci. 256, 261(2009)
[7] M.R. Rokni, S.R. Nutt, C.A. Widener, V.K. Champagne, R.H. Hrabe, J. Therm.Spray Technol. 26, 1308(2017)
[8] W. Li, K. Yang, S. Yin, X. Yang, Y. Xu, R. Lupoi, J. Mater. Sci. Technol. 34, 440(2018)
[9] K. Yang, W. Li, X. Guo, X. Yang, Y. Xu, J. Mater. Sci. Technol. 34, 1570(2018)
[10] S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H.L. Liao, W.Y. Li, R. Lupoi, Addit. Manuf. 21, 628(2018)
[11] B. Al-Mangour, P. Vo, R. Mongrain, E. Irissou, S. Yue, J. Therm.Spray Technol. 23, 641(2014)
[12] M.R. Rokni, C.A. Widener, V.K. Champagne, G.A. Crawford, S.R. Nutt, Surf. Coat. Technol. 310, 278(2017)
[13] B. Dikici, H. Yilmazer, I. Ozdemir, M. Isik, J. Therm.Spray Technol. 25, 704(2016)
[14] W.Y. Li, C.J. Li, H. Liao, C. Coddet, Appl. Surf. Sci. 253, 5967(2007)
[15] K. Yang, W. Li, C. Huang, X. Yang, Y. Xu, J. Mater. Sci. Technol. 34, 2167 (2018)
[16] W. Han, X.M. Meng, J. Zhao, J.B. Zhang, Acta Metall. Sin. (Engl. Lett.) 24, 249(2011)
[17] R. Huang, M. Sone, W. Ma, H. Fukanuma, Surf. Coat. Technol. 261, 278(2015)
[18] J.H. Cho, Y.M. Jin, D.Y. Park, H.J. Kim, I.H. Oh, K.A. Lee, Met. Mater. Int. 17, 157(2011)
[19] X. Qiu, J.Q. Wang, N.U.H. Tariq, L. Gyansah, J.X. Zhang, T.Y. Xiong, J. Therm. Spray Technol. 26, 1898(2017)
[20] W.Y. Li, C.L. Yang, H.L. Liao, Mater. Des. 32, 388(2011)
doi: 10.1037/a0027811 pmid: 22545980
[21] Y.Y. Wang, B. Normand, N. Mary, M. Yu, H.L. Liao, Surf. Coat. Technol. 315, 314(2017)
[22] K. Spencer, D.M. Fabijanic, M.X. Zhang, Surf. Coat. Technol. 206, 3275(2012)
[23] E. Irissou, J.G. Legoux, B. Arsenault, C. Moreau, J. Therm.Spray Technol. 16, 661(2007)
[24] W.Y. Li, G. Zhang, H.L. Liao, C. Coddet, J. Mater. Process. Technol. 202, 508(2008)
[25] M. Yu, X.K. Suo, W.Y. Li, Y.Y. Wang, H.L. Liao, Appl. Surf. Sci. 289, 188(2014)
doi: 10.1016/j.apsusc.2013.10.132
[26] X.T. Luo, Y.K. Wei, Y. Wang, C.J. Li, Mater. Des. 85, 527(2015)
[27] E. Sansoucy, P. Marcoux, L. Ajdelsztajn, B. Jodoin, Surf. Coat. Technol. 202, 3988(2008)
[28] A. Shkodkin, A. Kashirin, O. Klyuev, T. Buzdygar, J. Therm.Spray Technol. 15, 382(2006)
[29] M. Yandouzi, L. Ajdelsztajn, B. Jodoin, Surf. Coat. Technol. 202, 3866(2008)
[30] K.I. Triantou, D.I. Pantelis, V. Guipont, M. Jeandin, Wear 336, 96 (2015)
[31] T. Suhonen, T. Varis, S. Dosta, M. Torrell, J.M. Guilemany, Acta Mater. 61, 6329(2013)
[32] X.L. Zhou, X.K. Wu, J.G. Wang, J.S. Zhang, Acta Metall. Sin. (Engl. Lett.) 24, 43(2011)
[33] X.L. Zhou, X.Y. Su, H. Cui, H.H. Guo, X.K. Wu, J.S. Zhang, Acta Metall. Sin. 44, 1286(2008). (in Chinese)
[34] Y. Bai, Z.H. Wang, X.B. Li, G.S. Huang, C.X. Li, Y. Li, Materials 11, 853 (2018)
[1] Xiao Wang, Fei Lv, Li-Da Shen, Hui-Xin Liang, De-Qiao Xie, Zong-Jun Tian. Influence of Island Scanning Strategy on Microstructures and Mechanical Properties of Direct Laser-Deposited Ti-6Al-4V Structures[J]. 金属学报英文版, 2019, 32(9): 1173-1180.
[2] Jian-Guo Chen, Chen-Xi Liu, Chen Wei, Yong-Chang Liu, Hui-Jun Li. Effects of Isothermal Aging on Microstructure and Mechanical Property of Low-Carbon RAFM Steel[J]. 金属学报英文版, 2019, 32(9): 1151-1160.
[3] Chao Xiang, Zhi-Ming Zhang, Hua-Meng Fu, En-Hou Han, Jian-Qiu Wang, Hai-Feng Zhang, Guo-Dong Hu. Microstructure, Mechanical Properties, and Corrosion Behavior of MoNbFeCrV, MoNbFeCrTi, and MoNbFeVTi High-Entropy Alloys[J]. 金属学报英文版, 2019, 32(9): 1053-1064.
[4] Shuang-Jian Chen, Xiang-Xi Ye, D.K. L.Tsang, Li Jiang, Chao-Wen Li, Kun Yu, Zhi-Jun Li . Microstructure and Its Influence on the Mechanical Properties of Ni-28W-6Cr-Based Alloy-Welded Joints by GTAW[J]. 金属学报英文版, 2019, 32(8): 1032-1040.
[5] Ning Yan, Hong-Shuang Di, Hui-Qiang Huang, R D. K. Misra., Yong-Gang Deng. Hot Deformation Behavior and Processing Maps of a Medium Manganese TRIP Steel[J]. 金属学报英文版, 2019, 32(8): 1021-1031.
[6] Ying Han, Hong-Rui Wang, Yun-Dong Cao, Wen-Tao Hou, Shu-Jun Li. Improved Corrosion Resistance of Selective Laser Melted Ti-5Cu Alloy Using Atomized Ti-5Cu Powder[J]. 金属学报英文版, 2019, 32(8): 1007-1014.
[7] Li Ye-Fan, Li Chong, Wu Jing, Li Hui-Jun, Liu Yong-Chang, Wang Hai-Peng. Microstructural Feature and Evolution of Rapidly Solidified Ni3Al-Based Superalloys[J]. 金属学报英文版, 2019, 32(6): 764-770.
[8] Barros André, Cruz Clarissa, P. Silva Adrina, Cheung Noé, Garcia Amauri, Rocha Otávio, Moreira Antonio. Horizontally Solidified Al-3 wt%Cu-(0.5 wt%Mg) Alloys: Tailoring Thermal Parameters, Microstructure, Microhardness, and Corrosion Behavior[J]. 金属学报英文版, 2019, 32(6): 695-709.
[9] Chen Wang, Bei-Bei Wang, Dong Wang, Peng Xue, Quan-Zhao Wang, Bo-Lv Xiao, Li-Qing Chen, Zong-Yi Ma. High-Speed Friction Stir Welding of SiCp/Al-Mg-Si-Cu Composite[J]. 金属学报英文版, 2019, 32(6): 677-683.
[10] Xin-Tong Lian, Wen-Ru Sun, Fang Liu, Dan-Dan Zheng, Xin Xin. Effects of Phosphorus and Iron on Microstructures and Mechanical Properties in NiCrFe-Based Alloys[J]. 金属学报英文版, 2019, 32(5): 659-667.
[11] Fumio Ogawa, Shuji Yamamoto, Chitoshi Masuda. Thermal Conductivity and Tensile Properties of Carbon Nanofiber-Reinforced Aluminum-Matrix Composites Fabricated via Powder Metallurgy: Effects of Ball Milling and Extrusion Conditions on Microstructures and Resultant Composite Properties[J]. 金属学报英文版, 2019, 32(5): 573-584.
[12] Pei-Lin Zhang, Yu-Hong Zhao, Ruo-Peng Lu, Zhi-Bing Ding, Hua Hou. Microalloying Effect of Sn on Phase Transformation During Heat Treatment in Mg-Y-Zn-Zr Alloys[J]. 金属学报英文版, 2019, 32(5): 550-558.
[13] Peng Liu, Zhao-Kuang Chu, Yong Yuan, Dao-Hong Wang, Chuan-Yong Cui, Gui-Chen Hou, Yi-Zhou Zhou, Xiao-Feng Sun. Microstructures and Mechanical Properties of a Newly Developed Austenitic Heat Resistant Steel[J]. 金属学报英文版, 2019, 32(4): 517-525.
[14] Bao-Biao Yu, Hong Yan, Jian-Bin Zhu, Jian-Long Liu, Huo-Gen Li, Qiao Nie. Effects of La on Microstructure and Corrosion Behavior of AlSi5Cu1Mg Alloy[J]. 金属学报英文版, 2019, 32(4): 443-451.
[15] Sohail Ahmad, Li-Feng Lv, Li-Ming Fu, Huan-Rong Wang, Wei Wang, Ai-Dang Shan. Effect of Annealing on Microstructure and Mechanical Properties of Ultrafine-Grained Low-Carbon Medium-Manganese Steel Produced by Heavy Warm Rolling[J]. 金属学报英文版, 2019, 32(3): 361-371.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About AMSE
Privacy Statement
Terms & Conditions
Editorial Office: Acta Metallurgica Sinica(English Letters), 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-024-83978879
E-mail:ams@imr.ac.cn

Copyright © 2016 AMSE, All Rights Reserved.