Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (9): 1453-1480.DOI: 10.1007/s40195-025-01894-2
					
													Hao Cheng1, Cheng-Lei Wang1( ), Xiao-Du Li2(
), Xiao-Du Li2( ), Li Pan2(
), Li Pan2( ), Chao-Jie Liang3, Wei-Jie Liu1
), Chao-Jie Liang3, Wei-Jie Liu1
												  
						
						
						
					
				
Received:2025-01-13
															
							
																	Revised:2025-03-17
															
							
																	Accepted:2025-03-31
															
							
																	Online:2025-09-10
															
							
																	Published:2025-06-28
															
						Contact:
								Cheng-Lei Wang,Hao Cheng, Cheng-Lei Wang, Xiao-Du Li, Li Pan, Chao-Jie Liang, Wei-Jie Liu. Machine Learning-Based High Entropy Alloys-Algorithms and Workflow: A Review[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1453-1480.
Add to citation manager EndNote|Ris|BibTeX
 
																													Fig. 1 Hardness prediction, a training set, b test set, c tenfold cross-validation of the training set, and d observed hardness function for LOOCV (N denotes the number of samples) of the training set. Reprinted with permission from the reference [60]
 
																													Fig. 2 a Evaluation indices obtained for each model and b predicted microhardness versus actual microhardness obtained for the XGBoost and RF models. Reprinted with permission from the reference [61]
 
																													Fig. 3 a Comparison of the microhardness of initial data with screened microhardness after different iterations. b Comparison of the microhardness of initial data collected in the Al-Co-Cr-Cu-Fe-Ni alloy system with screened microhardness after different iterations. c Relationship between the predicted and experimental hardness. d Although deviations are observed in compositions Nos. 2 and 11, this discrepancy occurs only during the initial half of the AL loop. e In the latter half of the AL loop, the experimental microhardness gradually aligns closely with the predicted values. Reprinted with permission from the reference [61]
 
																													Fig. 4 a Comparison of R2 and b RMSE between the NN model and the present model (with T&C). c Comparison of R2 and d RMSE among ML models other than the NN model and the present model. e Comparison of the experimental and predicted values of YS. f Comparison of the experimental and predicted values of UTS. Reprinted with permission from the reference [63]
| Model | Applicable mandates | Advantages | Limitations | 
|---|---|---|---|
| SVM [ | (1) Phase stability classification | (1) Excellent performance in high dimensional space | (1) Parameter selection is complex | 
| (2) Binary classification of corrosion resistance | (2) Small samples are valid | (2) Long training hours | |
| (3) Non-linear processing | (3) Noise sensitivity | ||
| XGBoost [ | (1) Strength/hardness prediction (regression) | (1) Automatic handling of missing data | (1) Parameter tuning is complex | 
| (2) Component-performance relationship modeling | (2) Feature importance analysis | (2) Long training hours | |
| (3) Efficient handling of high-dimensional nonlinear data | (3) Possible overfitting | ||
| NN [ | (1) Component-performance relationship modeling | (1) Automatic learning of complex nonlinear relationships | (1) A lot of data is required | 
| (2) Multi-scale feature fusion | (2) Processing of raw data | (2) Poor model Interpretability | |
| (3) Suitable for end-to-end learning | (3) High consumption of computing resources | ||
| RF [ | (1) Multi-objective classification (phase stability/corrosion behavior) | (1) Handling high-dimensional data | (1) High memory consumption | 
| (2) Feature importance ranking (key alloying element screening) | (2) Parallel computing is efficient | (2) Possible overfitting of high base features | |
| (3) Robustness is good | (3) Biased selection of dominant features | 
Table 1 Applicability, advantages, and disadvantages of SVM, XGBoost, NN, and RF
| Model | Applicable mandates | Advantages | Limitations | 
|---|---|---|---|
| SVM [ | (1) Phase stability classification | (1) Excellent performance in high dimensional space | (1) Parameter selection is complex | 
| (2) Binary classification of corrosion resistance | (2) Small samples are valid | (2) Long training hours | |
| (3) Non-linear processing | (3) Noise sensitivity | ||
| XGBoost [ | (1) Strength/hardness prediction (regression) | (1) Automatic handling of missing data | (1) Parameter tuning is complex | 
| (2) Component-performance relationship modeling | (2) Feature importance analysis | (2) Long training hours | |
| (3) Efficient handling of high-dimensional nonlinear data | (3) Possible overfitting | ||
| NN [ | (1) Component-performance relationship modeling | (1) Automatic learning of complex nonlinear relationships | (1) A lot of data is required | 
| (2) Multi-scale feature fusion | (2) Processing of raw data | (2) Poor model Interpretability | |
| (3) Suitable for end-to-end learning | (3) High consumption of computing resources | ||
| RF [ | (1) Multi-objective classification (phase stability/corrosion behavior) | (1) Handling high-dimensional data | (1) High memory consumption | 
| (2) Feature importance ranking (key alloying element screening) | (2) Parallel computing is efficient | (2) Possible overfitting of high base features | |
| (3) Robustness is good | (3) Biased selection of dominant features | 
 
																													Fig. 7 a Predicted frequency distribution of L12 generated from the dataset for the structural probability of 1 nm voxels. b zx-SDMs generated from the data corresponding to regions 1, 2, and 3 in a. Reprinted with permission from the reference [77]
 
																													Fig. 8 a-c Comparison between the GNN model configurational energies (per atom) and those obtained from DFT (per atom). b, d Entropy (black curve) and heat capacity (red curve) at different temperatures using the mean-square error as an objective loss function. Reprinted with permission from the reference [84]
| Model | Applicable mandates | Advantages | Limitations | 
|---|---|---|---|
| CNN [ | (1) Microstructure image analysis | (1) Automatic extraction of local spatial features | (1) A large amount of labeled image data is required | 
| (2) Atomic arrangement pattern recognition | (2) High potential for transfer learning | (2) Sensitive to image resolution | |
| (3) It is difficult to explain the feature learning process | |||
| GNN [ | (1) Modeling atomic-scale composition-structure-property relationships | (1) Natural expression of interatomic topological relations | (1) High computational complexity | 
| (2) Crystal structure prediction | (2) Physical a priori can be fused | (2) A reasonable neighborhood truncation radius needs to be defined | |
| (3) Support for non-Euclidean data modeling | (3) Lack of standardized graph structure definitions | ||
| GAN [ | (1) Novel HEA composition generation | (1) Generate virtual alloys that conform to the laws of physics | (1) Training is erratic | 
| (2) Microstructure Synthesis | (2) Target performance can be optimized in conjunction with reinforcement learning | (2) Complex hyperparameter tuning is required | |
| (3) Data enhancement | (3) Low interpretability of generated results | 
Table 2 Applicability, advantages, and disadvantages of CNN, GNN, and GAN
| Model | Applicable mandates | Advantages | Limitations | 
|---|---|---|---|
| CNN [ | (1) Microstructure image analysis | (1) Automatic extraction of local spatial features | (1) A large amount of labeled image data is required | 
| (2) Atomic arrangement pattern recognition | (2) High potential for transfer learning | (2) Sensitive to image resolution | |
| (3) It is difficult to explain the feature learning process | |||
| GNN [ | (1) Modeling atomic-scale composition-structure-property relationships | (1) Natural expression of interatomic topological relations | (1) High computational complexity | 
| (2) Crystal structure prediction | (2) Physical a priori can be fused | (2) A reasonable neighborhood truncation radius needs to be defined | |
| (3) Support for non-Euclidean data modeling | (3) Lack of standardized graph structure definitions | ||
| GAN [ | (1) Novel HEA composition generation | (1) Generate virtual alloys that conform to the laws of physics | (1) Training is erratic | 
| (2) Microstructure Synthesis | (2) Target performance can be optimized in conjunction with reinforcement learning | (2) Complex hyperparameter tuning is required | |
| (3) Data enhancement | (3) Low interpretability of generated results | 
 
																													Fig. 10 Active learning framework for designing and discovering target compositions of high-entropy Invar alloys with low coefficient of thermal expansion, combining ML modeling, DFT, thermodynamic simulations, and experimental feedback, after repeated iterations until the target alloy is discovered. Reprinted with permission from the reference [101]
 
																													Fig. 11 Transferable meta-learning algorithm frame consists of meta-learning based on adaptive migration Walrus optimizer, balanced-relative density peak clustering, and transfer strategy. Reprinted with permission from the reference [106]
| Data categories | Subcategories | Applicability | Advantages | Limitations | 
|---|---|---|---|---|
| Experimental data [ | (1) Experimental records | (1) Model validation | (1) High reliability and direct reflection of alloy behavior | (1) High acquisition cost and lack of data | 
| (2) Critical performance prediction | (2) Experimental error | |||
| (2) Published literature | (1) Multi-system comparisons | (1) High potential for cross-team data reuse | (1) Unharmonized data format | |
| (2) Data enhancement | (2) Covering multiple systems | (2) Publication bias | ||
| Computational simulation [ | (1) Molecular dynamics | (1) Atomic scale dynamics studies (e.g., dislocation motion) | (1) Reveal micro-mechanisms | (1) Force field accuracy limitations | 
| (2) High throughput generation | (2) Limited time scales (nanoseconds) | |||
| (2) Density functional theory | (1) Thermodynamic stability predictions | (1) Highly accurate quantum mechanical foundation | (1) Very high computational cost | |
| (2) Electronic performance calculations | ||||
| Data generation [ | (1) GAN synthesis data | (1) Inverse design | (1) Fill experimental gaps | (1) Physical consistency needs to be verified | 
| (2) Data enhancement | (2) Support active learning | (2) May introduce implicit bias | ||
| (2) Multi-physics field coupling simulation | (1) Extreme environment performance prediction (e.g., high-temperature oxidation) | (1) Reveal complex interactions | (1) Model simplification assumptions affect realism | |
| (2) Support multi-objective optimization | ||||
| Public database | (1) Material project | (1) Preliminary material screening | (1) Structured data | (1) Low HEA coverage (< 5%) and lack of process parameters | 
| (2) Characterization engineering | (2) API interface support | |||
| (2) Database of in-situ experiments | (1) Phase transition mechanism studies | (1) Capture dynamic behavior | (1) Expensive equipment | |
| (2) Real-time process monitoring | (2) High spatial and temporal resolution | (2) Complex data processing | 
Table 3 Main data sources and related information
| Data categories | Subcategories | Applicability | Advantages | Limitations | 
|---|---|---|---|---|
| Experimental data [ | (1) Experimental records | (1) Model validation | (1) High reliability and direct reflection of alloy behavior | (1) High acquisition cost and lack of data | 
| (2) Critical performance prediction | (2) Experimental error | |||
| (2) Published literature | (1) Multi-system comparisons | (1) High potential for cross-team data reuse | (1) Unharmonized data format | |
| (2) Data enhancement | (2) Covering multiple systems | (2) Publication bias | ||
| Computational simulation [ | (1) Molecular dynamics | (1) Atomic scale dynamics studies (e.g., dislocation motion) | (1) Reveal micro-mechanisms | (1) Force field accuracy limitations | 
| (2) High throughput generation | (2) Limited time scales (nanoseconds) | |||
| (2) Density functional theory | (1) Thermodynamic stability predictions | (1) Highly accurate quantum mechanical foundation | (1) Very high computational cost | |
| (2) Electronic performance calculations | ||||
| Data generation [ | (1) GAN synthesis data | (1) Inverse design | (1) Fill experimental gaps | (1) Physical consistency needs to be verified | 
| (2) Data enhancement | (2) Support active learning | (2) May introduce implicit bias | ||
| (2) Multi-physics field coupling simulation | (1) Extreme environment performance prediction (e.g., high-temperature oxidation) | (1) Reveal complex interactions | (1) Model simplification assumptions affect realism | |
| (2) Support multi-objective optimization | ||||
| Public database | (1) Material project | (1) Preliminary material screening | (1) Structured data | (1) Low HEA coverage (< 5%) and lack of process parameters | 
| (2) Characterization engineering | (2) API interface support | |||
| (2) Database of in-situ experiments | (1) Phase transition mechanism studies | (1) Capture dynamic behavior | (1) Expensive equipment | |
| (2) Real-time process monitoring | (2) High spatial and temporal resolution | (2) Complex data processing | 
 
																													Fig. 13 a-c ROC curves of the three classes of SEFs on the SVM model with AUC values inserted in the figure. d Performance evaluation of the three classes of SEF algorithms on the confusion matrix. Reprinted with permission from the reference [125]
 
																													Fig. 14 a Comparison of actual SFE and ML-predicted SFE, with the black dashed line indicating the ideal case where the prediction is equal to the actual SFE. b Comparison of actual SFE and ML predicted SFE on test data. Reprinted with permission from the reference [125]
 
																													Fig. 15 a MLR model test set predictive control. b BPNN model test set predictive control. c RF model test set prediction control. d Prediction confidence of the three ML models. Reprinted with permission from the reference [128]
 
																													Fig. 16 Visual metrics for the five classifiers: a ROC curve for DT; b ROC curve for RF; c ROC curve for XGBoost; d ROC curve of Voting; and e ROC curve of Stacking. Reprinted with permission from the reference [113]
 
																													Fig. 17 Comparison of schematic diagrams of different hyperparameter optimization methods: a grid search, b random search, c PSO, and d BO. Reprinted with permission from the reference [129]
 
																													Fig. 18 a SBS, SFS, and RF selecting different numbers of features and their respective RMSE performance. b RMSE values of iterative curves for GA selecting feature sets. c SHAP analysis for eight feature sets selected by GA. Reprinted with permission from the reference [49]
 
																													Fig. 19 Interpretability of SHAP-driven constructed ML models. a SHAP aggregation of large-scale predictions made by GPR_Y. b SHAP aggregation of large-scale predictions made by GPR_ρ. c SHAP force diagrams of individual predictions made by GPR_Y and GPR_ρ, corresponding to the optimal elemental compositions suggested by GPR-driven MOGAs (cf. point 2 in the cited Fig. 8). d Prediction of the Al14. 95Ni24.78Cr20.05Fe21.82Co18.4 HEA configurations. e Interaction of Al and Co concentrations on the GPR_Y prediction mechanism. f Interaction of Al and Co concentrations on the GPR_ρ prediction mechanism. Reprinted with permission from the reference [133]
| [1] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375, 213 (2004) | 
| [2] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004) | 
| [3] | D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017) | 
| [4] | P. Sathiyamoorthi, H.S. Kim, Prog. Mater. Sci. 123, 100709 (2022) | 
| [5] | Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102, 296 (2019) | 
| [6] | W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61, 2 (2018) | 
| [7] | N. Hashimoto, YAl. Zain, A. Yamamoto, T. Koyano, H.Y. Kim, S. Miyazaki, Mater. Lett. 287, 129286 (2021) | 
| [8] | Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014) | 
| [9] | L.J. Santodonato, Y. Zhang, M. Feygenson, M.P. Chad, C.G. Michael, J.K.W. Richard, C.N. Joerg, T. Zhi, K.L. Peter, Nat. Commun. 6, 5964 (2015) DOI PMID | 
| [10] | W.L. Hsu, C.W. Tsai, A.C. Yeh, J.W. Yeh, Nat. Rev. Chem. 8, 471 (2024) | 
| [11] | E.P. George, W.A. Curtin, C.C. Tasan, Acta Mater. 188, 435 (2020) DOI | 
| [12] | W. Jiang, Y. Zhu, Y. Zhao, Front. Mater. 8, 792359 (2022) | 
| [13] | Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016) | 
| [14] | W. Huo, H. Zhou, F. Fang, X. Hu, Z. Xie, J.Q. Jiang, Mater. Sci. Eng. A 689, 366 (2017) | 
| [15] | Y.J. Zhou, S.Y. Peng, Y.L. Guo, X.X. Wu, C.M. Liu, Z.M. Li, Acta Metall. Sin. -Engl. Lett. 37, 1186 (2024) | 
| [16] | Y.Z. Shi, B. Yang, P.K. Liaw, Metals 7, 43 (2017) | 
| [17] | N. Birbilis, S. Choudhary, J.R. Scully, M.L. Taheri, NPJ Mater. Degrad. 5, 14 (2021) | 
| [18] | W.Y. Huo, H.F. Shi, X. Ren, J.Y. Zhang, Adv. Mater. Sci. Eng. 16, 647351 (2015) | 
| [19] | M.Z. Xu, L.P. Xie, S.S. Yang, C.G. Sui, Q.C. Wang, Q.H. Long, M.H. Chen, F.H. Wang, Acta Metall Sin.-Engl. Lett. 38, 164 (2025) | 
| [20] | K.C. Atli, I.A. Karaman, Front. Met. Alloys 2, 1135826 (2023) | 
| [21] | W. Xiong, A.X.Y. Guo, S. Zhan, C.T. Liu, S.C. Cao, J. Mater. Sci. Technol. 142, 196 (2023) | 
| [22] | X.C. Xie, N. Li, W. Liu, S. Huang, Y.H. Xiao, Q.Y. Yu, H.P. Xiong, E.H. Wang, X.M. Hou, Chin. J. Mech. Eng. 35, 142 (2022) | 
| [23] | X. Li, C.L. Wang, L.C. Zhang, S.F. Zhou, J. Huang, M.Y. Gao, C. Liu, M. Huang, Y.T. Zhu, H. Chen, J.Y. Zhang, Z.J. Tan, Acta Metall. Sin. -Engl. Lett. 37, 1858 (2024) | 
| [24] | M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, 1st edn. (Springer, Cham, 2016), p.80 | 
| [25] | W.Y. Wang, S.L. Shang, Y. Wang, F.B. Han, A.D. Kristopher, Y.D. Wu, NPJ Comput. Mater. 3, 23 (2017) | 
| [26] | M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, G.M. Stocks, Phys. Rev. X 5, 011041 (2015) | 
| [27] | P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.P. Maria, D.W. Brenner, K.S. Vecchio, S. Curtarolo, Nat. Commun. 9, 4980 (2018) | 
| [28] | R. Feng, P.K. Liaw, M.C. Gao, M. Widow, NPJ Comput. Mater. 3, 50 (2017) | 
| [29] | W. Huang, P. Martin, H.L. Zhuang, Acta Mater. 169, 225 (2019) | 
| [30] | S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109, 1 (2011) | 
| [31] | C. Nyshadham, M. Rupp, B. Bekker, A.V. Shapeev, T. Mueller, C.W. Rosenbrock, G. Csanyi, D.W. Wingate, G.L.W. Hart, NPJ Comput. Mater. 5, 51 (2019) | 
| [32] | C.W. Rosenbrock, K. Gubaev, A.V. Shapeev, L.B. Partay, N. Bernstein, G. Csanyi, G.L.W. Hart, NPJ Comput. Mater. 7, 24 (2021) | 
| [33] | Y.X. Zuo, C. Chen, X.G. Li, Z. Deng, Y.M. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, S.P. Ong, J. Phys. Chem. A 124, 731 (2020) | 
| [34] | W. Jia, H. Wang, M. Chen, D.H. Lu, L. Lin, R. Car, Sto. Ana. IEEE. 12, 1 (2020) | 
| [35] | Y. Li, D. Lau, Giant 6, 100277 (2024) | 
| [36] | J.P. Yang, H.F. Zhang, H.C. Ji, N. Jia, Acta Metall. Sin. -Engl. Lett. 6, 1 (2024) | 
| [37] | Z.H. Zhu, W.H. Ning, X.Y. Niu, Y.H. Zhao, Acta Metall. Sin. -Engl. Lett. 37, 453 (2024) | 
| [38] | E.G. Flekkø, P.V. Coveney, Phys. Rev. Lett. 83, 1775 (1999) | 
| [39] | X.L. Liu, J.C. Zhang, Z.R. Pei, Prog. Mater. Sci. 131, 101018 (2023) | 
| [40] | G.L.W. Hart, T. Mueller, C. Toher, S. Curtarolo, Nat. Rev. Mater. 6, 730 (2021) | 
| [41] | J.F. Durodola, Prog. Mater. Sci. 123, 100797 (2022) | 
| [42] | X.L. Liu, J.X. Zhang, J.Q. Yin, S. Bi, M. Eisenbach, Y. Wang, Comput. Mater. Sci. 187, 110135 (2021) | 
| [43] | J. Yin, Z.R. Pei, M.C. Gao, Nat. Comput. Sci. 8, 686 (2021) | 
| [44] | J.M. Rickman, H.M. Chan, M.P. Harmer, J.A. Smeltzer, C.J. Marvel, A. Roy, G. Balasubramanian, Nat. Commun. 10, 2618 (2019) DOI PMID | 
| [45] | Z.R. Pei, J.Q. Yin, J.A. Hawk, D.E. Alman, M.C. Gao, NPJ Comput. Mater. 6, 50 (2020) | 
| [46] | R. Singh, A. Sharma, P. Singh, G. Balasubramanian, D. Johnson, Nat. Comput. Sci. 1, 54 (2021) | 
| [47] | X.Y. Huang, L. Zheng, H.B. Xu, H.W. Fu, Mater. Des. 239, 112797 (2024) | 
| [48] | R. Gruetzemacher, J. Whittlestone, Futures 135, 102884 (2022) | 
| [49] | W. Ren, Y.F. Zhang, W.L. Wang, S.J. Ding, N. Li, Mater. Des. 235, 112454 (2023) | 
| [50] | Y. Liu, T.L. Zhao, W.W. Ju, S.Q. Shi, J. Materiomics 3, 159 (2017) | 
| [51] | Y.B. Sun, C. Hou, N.D. Tran, Y.H. Lu, Z.M. Li, Y. Chen, J. Ni, NPJ Comput. Mater. 11, 54 (2025) | 
| [52] | L.F. Zhu, F. Körmann, Q. Chen, M. Selleby, J. Neugebauer, B. Grabowski, NPJ Comput. Mater. 10, 274 (2024) | 
| [53] | M.W. Fagerland, D.W. Hosmer, Stata J. 12, 447 (2012) | 
| [54] | X.N. Li, S.Y. Yi, A.B. Cundy, W.P. Chen, J. Clean. Prod. 371, 133612 (2022) | 
| [55] | Ö.F. Ertuğrul, M.E. Tağluk, Appl. Soft Comput. 55, 480 (2017) | 
| [56] | Y. Karimi, S.O. Prasher, R.M. Patel, S.H. Kim, Comput. Electron. Agric. 51, 99 (2006) | 
| [57] | O. Ennaji, L. Vergütz, A.E. Allali, Artif. Intell. Agric. 9, 1 (2023) | 
| [58] | B.I. Oluleye, D.W.M. Chan, P.A. Afari, Sustain. Prod. Consum. 35, 509 (2023) | 
| [59] | J. Zupan, Acta Chim. Slov. 41, 327 (1994) | 
| [60] | C. Yang, C. Ren, Y.F. Jia, G. Wang, M.J. Li, W.C. Lu, Acta Mater. 222, 117431 (2022) | 
| [61] | S.L. Zhao, B. Jiang, K.K. Song, X.M. Liu, W.Y. Wang, D.K. Si, J.L. Zhang, X.Y. Chen, C.S. Zhou, P.P. Liu, D. Chen, Z.Q. Zhang, P. Ramasamy, J.L. Tang, W.Q. Lv, K.G. Prashanth, D. Şopu, J. Eckert, Mater. Des. 238, 112634 (2024) | 
| [62] | A. Roy, T. Babuska, B. Krick, G. Balasubramanian, Scr. Mater. 185, 152 (2020) | 
| [63] | J. Wang, H. Kwon, H.S. Kim, B. Lee, NPJ Comput. Mater. 9, 60 (2023) | 
| [64] | Y.V. Krishna, U.K. Jaiswal, M.R. Rahul, Scr. Mater. 197, 113804 (2021) | 
| [65] | S. Swateelagna, M. Singh, M.R. Rahul, Intermetallics 167, 108198 (2024) | 
| [66] | J. Cervantes, F.G. Lamont, L.R. Mazahua, A. Lopez, Neurocomputing 408, 189 (2020) | 
| [67] | T.Q. Chen, H. Tong, M. Benesty, R. Packag, Vers. 1, 1 (2015) | 
| [68] | K. Gurney, An Introduction to Neural Networks, 1st edn. (CRC Press, Boca Raton, 1997), p.6 | 
| [69] | M. Belgiu, L. Drăguţ, ISPRS J. Photogramm. Remote Sens. 114, 24 (2016) | 
| [70] | S. Dong, P. Wang, K. Abbas, Comput. Sci. Rev. 40, 100379 (2021) | 
| [71] | A. Mayr, G. Klambauer, T. Unterthiner, S. Hochreiter, Front. Environ. Sci. 3, 80 (2016) | 
| [72] | L.A. Akanbi, A.O. Oyedele, L.O. Oyedele, R.O. Salami, J. Clean. Prod. 274, 122843 (2020) | 
| [73] | A. Mathew, P. Amudha, S. Sivakumari, Adv. Mach. Learn. Technol. Appl. Proc. AMLTA 202, 599 (2020) | 
| [74] | W.L. Fang, L.Y. Ding, B.T. Zhong, P.E.D. Love, H.B. Luo, Adv. Eng. Inform. 37, 139 (2018) | 
| [75] | F.N. Yuan, Z.X. Zhang, Z.J. Fang, Pattern Recogn. 136, 109228 (2023) | 
| [76] | F. Shamshad, S. Khan, S.W. Zamir, M.H. Khan, M. Hayat, F.S. Khan, H. Fu, Med. Image Anal. 88, 102802 (2023) | 
| [77] | Y. Li, X.Y. Zhou, T. Colnaghi, Y. Wei, A. Marek, H.X. Li, S. Bauer, M. Rampp, L.T. Stephenson, NPJ Comput. Mater. 7, 8 (2021) | 
| [78] | Z.Q. Zhou, Y.J. Zhou, Q.F. He, Z.Y. Ding, F.C. Li, Y. Yang, NPJ Comput. Mater. 5, 128 (2019) | 
| [79] | T. Nakamura, K. Fukami, K. Hasegawa, Y. Nabae, Phys. Flu. 33, 53 (2021) | 
| [80] | X.G. Wang, Commun. CCF 11, 15 (2015) | 
| [81] | J. Zhou, G.Q. Cui, S.D. Hu, Z.Y. Zhang, C. Yang, Z.Y. Liu, L.F. Wang, C.C. Li, M.S. Sun, AI Open. 1, 57 (2020) | 
| [82] | Z.H. Wu, S.R. Pan, F.W. Chen, G.D. Long, C.Q. Zhang, IEEE Trans. Neural Netw. Learn. Syst. 32, 4 (2020) | 
| [83] | F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, IEEE Trans. Neural Netw. 20, 61 (2008) | 
| [84] | Z.Y. Fang, Q.M. Yan, NPJ Comput. Mater. 10, 91 (2024) | 
| [85] | M.D. Witman, N.C. Bartelt, S. Ling, P.W. Guan, L. Way, M.D. Allendorf, V. Stavila, J. Phys. Chem. Lett. 15, 1500 (2024) | 
| [86] | M.L. Pasini, G.S. Jung, S. Irle, Comput. Mater. Sci. 224, 112141 (2023) | 
| [87] | T. Long, Z.L. Long, B. Pang, Mech. Mater. 191, 104945 (2024) | 
| [88] | I.J. Goodfellow, J.P. Abadie, M. Mirza, B. Xu, D.W. Farley, S. Ozair, A. Courville, Y. Bengio, Adv. Neural. Inf. Process. Syst. 16, 27 (2014) | 
| [89] | A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, A. Bharath, IEEE Signal Process. Mag. 35, 53 (2018) | 
| [90] | I.J. Goodfellow, J.P. Abadie, M. Mirza, B. Xu, D.W. Farley, S. Ozair, A. Courville, Y. Bengio, Commun. ACM 63, 139 (2020) | 
| [91] | A. Roy, A. Hussain, P. Sharma, G. Balasubramanian, M.F.N. Taufique, R. Devanathan, P. Singh, D.D. Johnson, Acta Mater. 257, 119177 (2023) | 
| [92] | Z.Y. Yang, S. Li, S. Li, J. Yang, D.R. Liu, Comput. Mater. Sci. 220, 112064 (2023) | 
| [93] | Z. Li, N. Birbilis, Integr. Mater. Manuf. Innov. 13, 435 (2024) | 
| [94] | C. Chen, H.R. Zhou, W.M. Long, G. Wang, J.L. Ren, Sci. China Technol. Sci. 66, 3615 (2023) | 
| [95] | Z.W. Li, F. Liu, W.J. Yang, S.H. Peng, J. Zhou, IEEE Trans. Neural Netw. Learn. Syst. 33, 6999 (2021) | 
| [96] | B. Müller, J. Reinhardt, M.T. Strickland, Neural Networks: An Introduction, 2nd edn. (Springer, Berlin Heidelberg, 1995), p.100 | 
| [97] | J. Gui, Z.N. Sun, Y.G. Wen, D.C. Tao, J.P. Ye, IEEE Trans. Knowl. Data Eng. 35, 3313 (2021) | 
| [98] | Y.L. Liu, C.H. Yao, C. Niu, W.L. Li, J.C. Yin, T. Shen, Mater. Today Commun. 26, 102032 (2021) | 
| [99] | S. Ament, M. Amsler, D.R. Sutherland, M.C. Chang, D. Guevarra, A.B. Connolly, J.M. Gregoire, M.O. Thompson, R.B.V. Dover, Sci. Adv. 7, 4930 (2021) | 
| [100] | U. Aggarwal, A. Popescu, C. Hudelot, Active Learning for Imbalanced Datasets[C]// Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. 2020: 1428 | 
| [101] | Z. Rao, P.Y. Tung, R. Xie, Y. Wei, H. Zhang, A. Ferrari, T.P.C. Klaver, F. Körmann, P.T. Sukumar, A.K.D. Silva, Y. Chen, Z. Li, D. Ponge, J. Neugebauer, O. Gutfleisch, S. Bauer, D. Raabe, Science 378, 78 (2022) | 
| [102] | L. Torrey, J. Shavlik, Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, 1st ed. (IGI Global, Hershey, PA, 2010), p. 242 | 
| [103] | M.L. Hutchinson, E. Antono, B.M. Gibbons, S. Paradiso, J. Ling, B. Meredig, Prepr. arXiv 1711, 05099 (2017) | 
| [104] | W.Y. Li, W.F. Li, Z.J. Qin, L.M. Tan, L. Huang, F. Liu, C. Xiao, Materials 15, 4251 (2022) | 
| [105] | Y. Zhang, K. Yang, G.S. Hao, D. Gong, Acta Autom. Sin. 47, 652 (2021) | 
| [106] | S. Hou, M.M. Zhou, M.J. Bai, W.W. Liu, H. Geng, B.K. Yin, H.T. Li, Appl. Sci. 14, 2076 (2024) | 
| [107] | G.A. Sulley, J. Raush, M.M. Montemore, J. Hamm, Scr. Mater. 249, 116180 (2024) | 
| [108] | Z.C. Song, Y.W. Feng, C. Lu, Mater. Sci. Eng. A 924, 147792 (2025) | 
| [109] | Y. Meng, J.G. Feng, S. Han, Z.H. Xu, W.B. Mao, T. Zhang, J.S. Kim, I. Roh, Y.P. Zhao, D.H. Kim, Y. Yang, J.W. Lee, L. Yang, C.W. Qiu, S.H. Bae, Nat. Rev. Mater. 8, 498 (2023) | 
| [110] | M. Chen, X.F. Zhang, X. Xiao, G.W. Li, JOM 73, 3411 (2021) DOI | 
| [111] | C.F. Du, Y.P. Gao, M. Zha, C. Wang, H.L. Jia, H.Y. Wang, Acta Mater. 250, 118855 (2023) | 
| [112] | Y. Mao, Q. He, X. Zhao, Sci. Adv. 6, 4169 (2020) | 
| [113] | J. Gao, Y.F. Wang, J.X. Hou, J.H. You, K.Q. Qiu, S.D. Zhang, J.P. Wang, Metals 13, 283 (2023) | 
| [114] | C. Nyby, X.L. Guo, J.E. Saal, S.C. Chien, A.Y. Angela, H. Ke, T. Li, P. Lu, C. Oberdorfer, S. Sahu, S. Li, C.D. Taylor, W. Windl, J.R. Scully, G.S. Frankel, Sci. Data 8, 58 (2021) | 
| [115] | J. Lu, X.N. Huang, Y.N. Yue, J. Appl. Phys. 135, 135104 (2024) | 
| [116] | C. Wen, H.C. Shen, Y.W. Tian, G.Q. Lou, N.C. Wang, Y.J. Su, Scr. Mater. 252, 116240 (2024) | 
| [117] | M.I. Jordan, T.M. Mitchell, Mater. Lett. 358, 135871 (2024) | 
| [118] | B. Mahesh, Int. J. Sci. Res. 9, 381 (2020) | 
| [119] | N.I. Ei, M.J. Murphy, What Is Machine Learning? in Machine Learning in Radiation Oncology: Theory and Applications, 1st edn. (Springer, Berlin, 2015), p.3 | 
| [120] | A.D. Clayton, A.M. Schweidtmann, G. Clemens, J.A. Manson, C.J. Taylor, C.G. Niño, T.W. Chamberlain, N. Kapur, A.J. Blacker, A.A. Lapkin, R.A. Bourne, Chem. Eng. J. 384, 123340 (2020) | 
| [121] | N. Radhika, M.S. Niketh, U.V. Akhil, A.A. Adediran, T.C. Jen, Results Eng. 23, 102780 (2024) | 
| [122] | D. Dey, S. Das, A. Pal, S. Dey, C.K. Raul, P. Mandal, A. Chatterjee, S. Chatterjee, M. Ghosh, J. Alloys Metall. Syst. 9, 100144 (2025) | 
| [123] | J.H. Fang, M. Xie, X.Q. He, J.M. Zhang, J.Q. Hu, Y.T. Chen, Y.C. Yang, Q.L. Jin, Mater. Today Commun. 33, 104900 (2022) | 
| [124] | Y. Li, J.J. Gong, S.L. Liang, W. Wu, Y.X. Wang, Z. Chen, J. Mater. Res. Technol. 34, 1732 (2025) | 
| [125] | X.Y. Zhang, R.F. Dong, Q.W. Guo, H. Hou, Y.H. Zhao, J. Mater. Res. Technol. 26, 4813 (2023) | 
| [126] | E. Alpaydin, Introduction to Machine Learning, 4th edn. (MIT Press, Cambridge, MA, 2020), p. 1 | 
| [127] | S.L. Sun, Z.H. Cao, H. Zhu, J. Zhao, IEEE Trans. Cybern. 50, 3668 (2019) | 
| [128] | J.G. Yu, F.P. Yu, Q. Fu, G. Zhao, C.Y. Gong, M.C. Wang, Q.X. Zhang, Nanomaterials 13, 968 (2023) | 
| [129] | J.H. Qian, Y. Li, J.L. Hou, S.J. Wu, Y. Zou, J. Mater. Res. 39, 2115 (2024) | 
| [130] | S.Y. Lee, S. Byeon, H.S. Kim, H. Jin, S. Lee, Mater. Des. 197, 109260 (2021) | 
| [131] | D. Dey, A. Pal, P. Biyani, P. Mandal, S. Das, S. Dey, M. Ghosh, J. Mater. Sci. 60, 4820 (2025) | 
| [132] | S.M. Lundberg, S.I. Lee, Adv. Neural. Inf. Process. Syst. 66, 30 (2017) | 
| [133] | K.K. Gupta, S. Barman, S. Dey, T. Mukhopadhyay, Mach. Learn. Sci. Technol. 5, 025082 (2024) | 
| [1] | Jiayu Wang, Ke Liu, Zhao Lei, Xing Li, Li Liu, Sujun Wu. Machine-Learning-Assisted Phase Prediction in High-Entropy Alloys Using Two-Step Feature Selection Strategy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1261-1274. | 
| [2] | Biao Zhang, Yuntian Du, Huishuang Jia, Yuanyi Zhou, Liguang Wang, Minghe Zhang, Yunli Feng, Weimin Gao, Ning Xu. Hot Deformation Behavior of CoNiV Medium-Entropy Alloy: Constitutive Model, Convolutional Neural Network, Hot Processing Map, and Microstructure Evolution [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1275-1292. | 
| [3] | Xiaolong Pei, Hua Hou, Yuhong Zhao. A Review of Intelligent Design and Optimization of Metal Casting Processes [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1293-1311. | 
| [4] | Zhongxue Wang, Le Ren, Yating Zhang, Mengcheng Zhou, Xinfang Zhang. Realizing Ultra-fast Spheroidization of GCr15 Bearing Steel by Analyzing the Correlation of Carbide Dissolution Law and Pulsed Electric Current Parameters Through Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1207-1218. | 
| [5] | Meisa Zhou, Kun-Ming Pan, Xiao-Ye Zhou, Shulong Ye, Shaojie Du, Hong-Hui Wu. Surface Wear Behavior of Nanograined NbMoTaW Refractory High-Entropy Alloys via Nano-scratching Simulations [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 946-960. | 
| [6] | Jingxiang Xu, Yuyan Yang, Ruiyang Huang, Xinwei Yuan, Huakang Bian, Zhenhua Chu, Yang Wang, Yanhua Lei. Enhancing the Corrosion Resistance of FeNiCoCrW0.2Al0.1 High-Entropy Alloy in 3.5 wt% NaCl Solution by Bilayer Passivation [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 407-418. | 
| [7] | Huanzhi Zhang, Tianxin Li, Qianqian Wang, Zhenbo Zhu, Hefei Huang, Yiping Lu. Effects of Nitrogen Doping on Microstructures and Irradiation Resistance of Ti-Zr-Nb-V-Mo Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1007-1018. | 
| [8] | Hong-Wei Zhang, Li-Wei Lan, Zhe-Yu Yang, Chang-Chun Li, Wen-Xian Wang. Microstructure Evolution and Nanomechanical Behavior of Micro-Area in Molten Pool of Selective Laser Melting (CoCrNi)82Al9Ti9 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1019-1033. | 
| [9] | Zhihong Zhu, Wenhang Ning, Xuanyang Niu, Yuhong Zhao. Machine Learning-Based Research on Tensile Strength of SiC-Reinforced Magnesium Matrix Composites via Stir Casting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 453-466. | 
| [10] | Xin Li, Chenglei Wang, Laichang Zhang, Shengfeng Zhou, Jian Huang, Mengyao Gao, Chong Liu, Mei Huang, Yatao Zhu, Hu Chen, Jingya Zhang, Zhujiang Tan. Machine Learning-Based Comprehensive Prediction Model for L12 Phase-Strengthened Fe-Co-Ni-Based High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1858-1874. | 
| [11] | Chao Xiang, En-Hou Han, Zhiming Zhang, Huameng Fu, Haifeng Zhang, Jianqiu Wang, Guodong Hu. Microstructure, Mechanical Properties and Corrosion Resistance of the Mo0.5V0.5NbTiZrx High-Entropy Alloys with Low Thermal Neutron Sections [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1643-1656. | 
| [12] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao. Unique Duplex Microstructure and Porosity Effect on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys Processed by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1465-1481. | 
| [13] | Jia-Qi Zheng, Ming-Liang Wang, Wen-Na Jiao, Long-Jiang Zou, Yan Di. Effect of Ti Addition on Microstructure Evolution and Mechanical Properties of Al18Co13Cr10Fe14Ni45 Eutectic High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1493-1501. | 
| [14] | Xiaoyuan Teng, Jianchao Pang, Feng Liu, Chenglu Zou, Xin Bai, Shouxin Li, Zhefeng Zhang. Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1536-1548. | 
| [15] | Shougang Duan, Qian Zhang, Wenxuan Li, Yong Dong, Beibei Jiang, Shichao Liu, Chuanqiang Li, Zhengrong Zhang. Effects of V Addition on Microstructural Evolution and Mechanical Properties of AlCrFe2Ni2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 391-404. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			