Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (6): 1029-1040.DOI: 10.1007/s40195-025-01840-2
Previous Articles Next Articles
Yating Zhang1, Biqian Li1, Shu Li1, Mengcheng Zhou2, Shengli Ding1,3(), Xinfang Zhang1,2(
)
Received:
2024-09-28
Revised:
2024-11-12
Accepted:
2025-01-03
Online:
2025-06-10
Published:
2025-04-24
Contact:
Shengli Ding, Yating Zhang, Biqian Li, Shu Li, Mengcheng Zhou, Shengli Ding, Xinfang Zhang. Using Machine Learning Methods to Predict the Ductile-to-Brittle Transition Temperature Shift in RPV Steel Under Different Pulse Current Parameters[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1029-1040.
Add to citation manager EndNote|Ris|BibTeX
Fig. 4 Ductile-brittle transition temperature value under various states: a the initial state; b aging for 400 °C-1000 h. After aging for 1000 h, the ductile-brittle transition temperature has changed from - 124.44 °C to - 93.62 °C, which meets the experimental requirements
Duty ratio | Frequency (Hz) | Current (A) | Pulsed time (s) | Division | Duty ratio | Frequency (Hz) | Current (A) | Pulsed time (s) | Division |
---|---|---|---|---|---|---|---|---|---|
0.05 | 200 | 660 | 10 | Test | 0.2 | 2000 | 231 | 10 | Train |
20 | Train | 30 | Train | ||||||
30 | Test | 0.24 | 600 | 308 | 10 | Train | |||
400 | 422 | 10 | Train | 20 | Train | ||||
20 | Train | 30 | Train | ||||||
30 | Train | 720 | 295 | 10 | Train | ||||
500 | 380 | 10 | Train | 0.33 | 832 | 350 | 10 | Train | |
20 | Test | 1000 | 265 | 10 | Train | ||||
30 | Train | 20 | Test | ||||||
1000 | 308 | 10 | Train | 30 | Train | ||||
20 | Test | 0.4 | 200 | 315 | 10 | Train | |||
30 | Test | 20 | Train | ||||||
0.2 | 200 | 391 | 10 | Test | 30 | Train | |||
20 | Train | 400 | 284 | 10 | Train | ||||
30 | Train | 20 | Train | ||||||
400 | 340 | 10 | Train | 30 | Test | ||||
30 | Test | 800 | 250 | 10 | Train | ||||
500 | 320 | 10 | Train | 20 | Train | ||||
20 | Train | 30 | Train | ||||||
30 | Train | 1000 | 232 | 10 | Train | ||||
1000 | 265 | 10 | Train | 20 | Train | ||||
20 | Train | 30 | Train | ||||||
30 | Train |
Table 1 Details of studied specimens with different electrical pulse treatment parameters
Duty ratio | Frequency (Hz) | Current (A) | Pulsed time (s) | Division | Duty ratio | Frequency (Hz) | Current (A) | Pulsed time (s) | Division |
---|---|---|---|---|---|---|---|---|---|
0.05 | 200 | 660 | 10 | Test | 0.2 | 2000 | 231 | 10 | Train |
20 | Train | 30 | Train | ||||||
30 | Test | 0.24 | 600 | 308 | 10 | Train | |||
400 | 422 | 10 | Train | 20 | Train | ||||
20 | Train | 30 | Train | ||||||
30 | Train | 720 | 295 | 10 | Train | ||||
500 | 380 | 10 | Train | 0.33 | 832 | 350 | 10 | Train | |
20 | Test | 1000 | 265 | 10 | Train | ||||
30 | Train | 20 | Test | ||||||
1000 | 308 | 10 | Train | 30 | Train | ||||
20 | Test | 0.4 | 200 | 315 | 10 | Train | |||
30 | Test | 20 | Train | ||||||
0.2 | 200 | 391 | 10 | Test | 30 | Train | |||
20 | Train | 400 | 284 | 10 | Train | ||||
30 | Train | 20 | Train | ||||||
400 | 340 | 10 | Train | 30 | Test | ||||
30 | Test | 800 | 250 | 10 | Train | ||||
500 | 320 | 10 | Train | 20 | Train | ||||
20 | Train | 30 | Train | ||||||
30 | Train | 1000 | 232 | 10 | Train | ||||
1000 | 265 | 10 | Train | 20 | Train | ||||
20 | Train | 30 | Train | ||||||
30 | Train |
Fig. 5 Spearman correlation coefficient matrix plot. Blue represents a positive correlation, and red represents a negative correlation; the * sign is a significant mark, which is set according to the change of the significance level, and it is displayed as *, ** and*** when it is less than 0.05, 0.01 and less than 0.001
Fig. 6 Quantity density estimates of original and generated datasets: a frequency; b duty ratio; c current; d time; e TTS. The distribution frequencies and fitting curves of the data in the original and generated are similar
Samples | R2 | RMSE | MAE |
---|---|---|---|
Generated samples | 0.75272 | 0.08034 | 0.07115 |
Merged samples | 0.82778 | 0.07352 | 0.06022 |
Original samples | 0.62876 | 0.09071 | 0.07436 |
Table 2 Predicted performance comparison
Samples | R2 | RMSE | MAE |
---|---|---|---|
Generated samples | 0.75272 | 0.08034 | 0.07115 |
Merged samples | 0.82778 | 0.07352 | 0.06022 |
Original samples | 0.62876 | 0.09071 | 0.07436 |
ML models | Hyper-parameters | Ranges of values |
---|---|---|
PSO-RF | n_estimators | [100-500] |
max_depth | [1, 2, 3, 4, 5, 6, 7] | |
PSO-DT | max_depth | [1, 2, 3, 4, 5, 6, 7] |
min_samples_split | [1, 2, 3, 4, 5] | |
PSO-SVM | C | [0.1-50] |
epsilon | [0.001-1] | |
PSO-ANN | α | [0.001-1] |
neurons | [32-128] |
Table 3 Optimize hyperparameter values for ML models using the PSO algorithm
ML models | Hyper-parameters | Ranges of values |
---|---|---|
PSO-RF | n_estimators | [100-500] |
max_depth | [1, 2, 3, 4, 5, 6, 7] | |
PSO-DT | max_depth | [1, 2, 3, 4, 5, 6, 7] |
min_samples_split | [1, 2, 3, 4, 5] | |
PSO-SVM | C | [0.1-50] |
epsilon | [0.001-1] | |
PSO-ANN | α | [0.001-1] |
neurons | [32-128] |
Model | R2 | RMSE | MAE |
---|---|---|---|
DT | 0.813 | 0.076 | 0.063 |
PSO-DT | 0.902 | 0.052 | 0.042 |
RF | 0.828 | 0.073 | 0.060 |
PSO-RF | 0.934 | 0.045 | 0.036 |
SVM | 0.711 | 0.095 | 0.083 |
PSO-SVM | 0.732 | 0.06 | 0.051 |
ANN | 0.643 | 0.088 | 0.037 |
PSO-ANN | 0.681 | 0.073 | 0.03 |
Table 4 Predictive accuracy of machine learning models
Model | R2 | RMSE | MAE |
---|---|---|---|
DT | 0.813 | 0.076 | 0.063 |
PSO-DT | 0.902 | 0.052 | 0.042 |
RF | 0.828 | 0.073 | 0.060 |
PSO-RF | 0.934 | 0.045 | 0.036 |
SVM | 0.711 | 0.095 | 0.083 |
PSO-SVM | 0.732 | 0.06 | 0.051 |
ANN | 0.643 | 0.088 | 0.037 |
PSO-ANN | 0.681 | 0.073 | 0.03 |
Fig. 7 Taylor diagram comparing the performance of eight models. The scatter points represent the previously mentioned eight models, with the radial lines indicating R2, the horizontal and vertical axes representing MAE, and the dashed lines indicating RMSE. The PSO-RF model achieves maximum correlation at the closest distance to the reference point, making it the optimal model
[1] | S.H. Song, L.Q. Weng, Acta Metall. Sin.-Engl. Lett. 1, 20 (2006) |
[2] |
R. Chaouadi, R. Gérard, E. Stergar, J. Nucl. Mater. 519, 188 (2019)
DOI |
[3] | Y.U. Heo, Y.K. Kim, J.S. Kim, Acta Mater. 61, 519 (2013) |
[4] | G.R. Odette, G.E. Lucas, JOM 53, 18 (2001) |
[5] | L. Chen, K. Nishida, K. Murakami, J. Nucl. Mater. 498, 259 (2018) |
[6] | T. Toyama, A. Kuramoto, Y. Nagai, J. Nucl. Mater. 449, 207 (2014) |
[7] | A.V. Nikolaeva, Y.R. Kevorkyan, Y.A. Nikolaev, ASTM Spec, Tech. Publ. 1366, 399 (2000) |
[8] | G.R. Odette, G.E. Lucas, Radiat. Eff. Defects Solids 144, 189 (1998) |
[9] | G.R. Odette, B.D. Wirth, D.J. Bacon, MRS Bull. 26, 176 (2001) |
[10] | R. Ngayam-Happy, C.S. Becquart, C. Domain, J. Nucl. Mater. 440, 143 (2013) |
[11] | S.Y. Qin, X.F. Zhang, J. Alloy. Compd. 862, 158508 (2021) |
[12] | X.F. Zhang, L.G. Yan, Acta Metall. Sin. 56, 257 (2020) |
[13] | Y. Zhou, J. Guo, M. Gao, Materials 58, 1732 (2004) |
[14] | X.S. Huang, X.F. Zhang, J. Alloy. Compd. 805, 26 (2019) |
[15] | J. Schmidt, M.R.G. Marques, S. Botti, NPJ Comput. Mater. 5, 484 (2019) |
[16] | Z.H. Zhu, W.H. Ning, X.Y. Niu, Y.H. Zhao, Acta Metall. Sin.-Engl. Lett. 37, 453 (2024) |
[17] | M.M. Hosne, M.M. Akter, M.I. Aminul, Appl. Surf. Sci. Adv. 18, 100523 (2023) |
[18] | Z.H. Zhu, W.H. Ning, X.Y. Niu, Q.L. Wang, R.H. Shi, Y.H. Zhao, Mater. Today Commun. 37, 107249 (2023) |
[19] | H. Wang, S. Gao, B. Wang, J. Mater. Sci. Technol. 198, 111 (2024) |
[20] | Y.C. Liu, H. Wu, T. Mayeshiba, N.P.J. Comput. Mater. 8, 85 (2022) |
[21] | F. Diego, S. Marta, K. Mark, Metals 12, 186 (2022) |
[22] | J. Mathew, D. Parfitt, K. Wilford, J. Nucl. Mater. 502, 311 (2018) |
[23] | G.G. Lee, M.C. Kim, B.S. Lee, Nucl. Eng. Technol. 53, 4022 (2021) |
[24] | B. Bai, H. Xu, J.L. Xia, IJARDTI. 5, 44 (2023) |
[25] | W.K. He, S.Y. Gong, X. Yang, Ann. Nucl. Energy 192, 109965 (2023) |
[26] | N.S. Jai, R. Punit, S. Kumar, Fusion Eng. Des. 195, 113964 (2023) |
[27] | L.Y. Su, Expert Syst. Appl. 221, 119696 (2023) |
[28] | B.Q. Lap, N.H. Du, P.T. Hang, Ecol. Inform. 74, 101991 (2023) |
[29] | C.J. Zhou, B. Gao, W.X. Zhu, Comput. Geotech. 170, 106268 (2024) |
[30] | X.Y. Zhang, R.F. Dong, Q.W. Guo, H. Hua, Y.H. Zhao, J. Mater. Res. Technol. 26, 4813 (2023) |
[31] | M.B. Gorji, P.D. Alix, S. Samuel, Int. J. Mech. Sci. 215, 106949 (2022) |
[32] | Y.H.K. Jin, B. Erdenebileg, C. Dongwoo, J.M.I.R. Med. Inform. 11, 47859 (2023) |
[33] | M. Katzef, A.C. Cullen, T. Alpcan, Annu. Rev. Control. 53, 329 (2022) |
[34] | G. Odette, T. Yamamoto, T. Williams, J. Nucl. Mater. 526, 151863 (2019) |
[35] | U.M.R. Paturi, S. Cheruku, Mater. Today: Proc. 38, 2392 (2021) |
[36] | Y. Young, K.M. Jun, K.J. Jeong, Electroch. Acta 399, 139424 (2021) |
[37] | Z. Zhao, Y. Zou, P. Liu, Electroch. Acta 418, 140350 (2022) |
[38] | K. Zhou, X.Y. Sun, S.W. Shi, Fatigue Fract. Eng. Mater. Struct. 44, 2524 (2021) |
[39] | X. Liu, C.E. Athanasiou, N.P. Padture, Acta Mater. 190, 105 (2020) |
[40] |
R. Moradi, R. Berangi, B. Minaei, Artif. Intell. Rev. 53, 3947 (2020)
DOI |
[41] | A.J. Smola, B. Schölkopf, Stat. Comput. 14, 199 (2004) |
[42] | M.R. Aghamohammadi, M. Abedi, Int. J. Elec. Power. 99, 95 (2018) |
[43] | L. Breiman, Random Forests 45, 5 (2001) |
[44] | A. Tella, A.L. Balogun, N. Adebisi, Atmos. Pollut. 12, 101202 (2021) |
[45] | Y. Zhang, J.L. Liao, C. Xu, Forest Ecol. Manag. 569, 122159 (2024) |
[46] | G.Q. Zhang, G.Y. Hui, A.M. Yang, Sci. Rep. 11, 1326 (2021) |
D.Y. Li, Z.D. Liu, J. Zhou, Mathematics 10, 787 (2022) | |
[47] | J.F. Zhang, G.W. Ma, Y.M. Huang, Constr. Build. Mater. 210, 713 (2019) |
[48] | J.X. Cheng, J. Liu, Z. Xu, Procedia Comput. 174, 123 (2020) |
[49] | S. Rahman, S. Pal, S. Mittal, IoT. 26, 101212 (2024) |
[50] | E. Mohammad, C. Nourhene, A. Adel, Pattern Recognit. Lett. 159, 204 (2022) |
[51] | Y. Bo, X. Guo, Q. Liu, Tunn. Undergr. Space Technol. 150, 405842 (2024) |
[52] | A.I. Okoji, C.N. Okoji, O.S. Awarun, Chemosphere 344, 140238 (2023) |
[53] | D.S. Wang, D.P. Tan, L. Liu, Soft. Comput. 22, 387 (2018) |
[54] | S. Charadi, H.E. Chakir, A. Redouane, Energies 19, 16 (2023) |
[55] | T. Liu, P. Zhang, G. Cui, Theor. Appl. Fract. Mech. 115, 103074 (2021) |
[56] | H.X. Wang, Z.Q. Duan, Q.W. Qing, Cmc-Comput. Mater. Con. 77, 1393 (2023) |
[57] | Q.W. Guo, Y. Pan, H. Hou, Int. J. Refract. Met. H 112, 106116 (2023) |
[58] | M.N. Amin, W. Ahmad, K. Khan, Case Stud. Constr. Mater. 19, 2278 (2023) |
[59] | C. Cakiroglu, S. Demir, M. Hakan Ozdemir, Hakan Ozdemir, Expert Syst. Appl. 237, 121464 (2024) |
[61] | I.U. Ekanayake, D.P.P. Meddage, U. Rathnayake, Case Stud. Constr. Mater. 16, 1059 (2022) |
[62] | X. Zheng, Y. Xie, X. Yang, J. Mater. Res. Technol. 25, 4047 (2023) |
[63] | A. Abdulalim Alabdullah, M. Iqbal, M. Zahid, Constr. Build. Mater. 345, 128296 (2022) |
[64] | J.M. Hyde, K.B. Wilford, T.J. Williams, Ultramicroscopy 111, 664 (2011) |
[65] | Q.W. Guo, X.T. Xu, X.L. Pei, J. Mater. Res. Technol. 22, 3331 (2023) |
[66] | H.T. Zhang, H.D. Fu, X.Q. He, Acta Mater. 200, 803 (2020) |
[67] | X.L. Pei, Y.H. Zhao, L.W. Chen, Q.W. Guo, Z.Q. Pan, H. Hua, Mater. Des. 232, 112086 (2023) |
[68] | M.S. Hasan, A. Kordijazi, P.K. Rohatgi, Tribol. Int. 161, 107065 (2021) |
[69] | J.F. Ruma, M.S.G. Adnan, A. Dewan, Results Eng. 17, 100951 (2023) |
[70] | A.G. Gad, Arch. Comput. Methods Eng. 29, 2531 (2022) |
[71] | H.T. Thai, Structures 38, 448 (2022) |
[72] | C.Y. Wu, L. Jin, J. Zhao, X.C. Wan, T. Jiang, K.G. Ling, Geoenergy Sci. Eng. 242, 213216 (2024) |
[1] | Mengcheng Zhou, Yaxiong Dai, Changhao Liu, Shengli Ding, Xinfang Zhang. Migration Behavior of Impurity Iron in Silicon Melt Under Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 889-903. |
[2] | Kun Yi, Siqi Xiang, Mengcheng Zhou, Xinfang Zhang, Furui Du. Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1511-1522. |
[3] | Jun-Yang Gao, Xue-Bing Liu, Hai-Fei Zhou, Xin-Fang Zhang. Modification of Corrosion Resistance of the Plain Carbon Steels by Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1233-1239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||