Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (4): 691-704.DOI: 10.1007/s40195-024-01809-7
Chao Hai1, Kang Huang2, Cuiwei Du3,4(), Xiaogang Li3,4
Received:
2024-09-24
Revised:
2024-11-05
Accepted:
2024-11-12
Online:
2025-04-10
Published:
2025-01-22
Contact:
Cuiwei Du, About author:
First author contact:Chao Hai and Kang Huang both are Co first author.
Chao Hai, Kang Huang, Cuiwei Du, Xiaogang Li. In-Depth Understanding the Retained Austenite Stability on the Susceptibility of Multi-Alloying Ultra-Strength Steel to Hydrogen-Induced Cracking[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 691-704.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 TEM images illustrating the microstructures of a QT, b QL15T, c QL30T, d QL60T specimens, e the corresponding dark-field micrograph and f selected area electron diffraction patterns of QL60T specimens
Specimens | No pretreatment volume fraction of RA (%) [ | Deep cryogenic pretreatment volume fraction of RA (%) | Transformation (%) |
---|---|---|---|
QT | 4.8 ± 0.3 | 2.3* ± 0.2 (low) | - |
QL15T | 3.2 ± 0.2* (low) | 2.8 ± 0.3* (low) | - |
QL30T | 9.3 ± 0.3 | 8.8 ± 0.4 | 5 ± 0.3 |
QL60T | 6.7 ± 0.1 | 6.1 ± 0.3 | 10 ± 0.2 |
Table 1 Volume fraction of retained austenite obtained from XRD results
Specimens | No pretreatment volume fraction of RA (%) [ | Deep cryogenic pretreatment volume fraction of RA (%) | Transformation (%) |
---|---|---|---|
QT | 4.8 ± 0.3 | 2.3* ± 0.2 (low) | - |
QL15T | 3.2 ± 0.2* (low) | 2.8 ± 0.3* (low) | - |
QL30T | 9.3 ± 0.3 | 8.8 ± 0.4 | 5 ± 0.3 |
QL60T | 6.7 ± 0.1 | 6.1 ± 0.3 | 10 ± 0.2 |
Specimens | I∞/A (A/m2) | tb (s) | Deff (10-11 m2/s) | Cap (mol/m3) | Nt (1028 m−3) | Refs. |
---|---|---|---|---|---|---|
QT | 0.52 | 3098 | 2.10 | 257.83 | 3.14 | [ |
QT-DCT | 0.72 | 3032 | 2.11 | 347.69 | 4.23 | - |
QL15T | 0.53 | 3243 | 2.02 | 271.87 | 3.46 | [ |
QL15T-DCT | 0.49 | 3174 | 2.06 | 244.92 | 3.06 | - |
QL30T | 0.42 | 3400 | 1.92 | 226.65 | 3.03 | [ |
QL30T-DCT | 0.46 | 3240 | 1.95 | 233.93 | 2.92 | - |
QL60T | 0.54 | 3243 | 1.98 | 278.58 | 3.62 | [ |
QL60T-DCT | 0.57 | 3250 | 2.01 | 291.49 | 3.72 | - |
Table 2 Hydrogen permeation parameters of four different specimens
Specimens | I∞/A (A/m2) | tb (s) | Deff (10-11 m2/s) | Cap (mol/m3) | Nt (1028 m−3) | Refs. |
---|---|---|---|---|---|---|
QT | 0.52 | 3098 | 2.10 | 257.83 | 3.14 | [ |
QT-DCT | 0.72 | 3032 | 2.11 | 347.69 | 4.23 | - |
QL15T | 0.53 | 3243 | 2.02 | 271.87 | 3.46 | [ |
QL15T-DCT | 0.49 | 3174 | 2.06 | 244.92 | 3.06 | - |
QL30T | 0.42 | 3400 | 1.92 | 226.65 | 3.03 | [ |
QL30T-DCT | 0.46 | 3240 | 1.95 | 233.93 | 2.92 | - |
QL60T | 0.54 | 3243 | 1.98 | 278.58 | 3.62 | [ |
QL60T-DCT | 0.57 | 3250 | 2.01 | 291.49 | 3.72 | - |
Steel | Yield stress (MPa) | Tensile stress (MPa) | Elongation (%) | HE index (%) |
---|---|---|---|---|
QT-air | 953 ± 17 | 988 ± 14 | 11.7 ± 0.2 | - |
QT-DCT-air | 950 ± 11 | 974 ± 10 | 11.1 ± 0.3 | - |
QT-H | 950 ± 14 | 978 ± 10 | 5.0 ± 0.2 | 57.3 |
QT-DCT-H | 956 ± 15 | 971 ± 18 | 3.1 ± 0.1 | 72.1 |
QL15T-air | 913 ± 10 | 972 ± 11 | 14 ± 0.2 | - |
QL15T-DCT-air | 953 ± 20 | 1004 ± 11 | 13.6 ± 0.2 | - |
QL15T-H | 911 ± 13 | 944 ± 12 | 5.7 ± 0.3 | 58.01 |
QL15T-DCT-H | 965 ± 20 | 980 ± 21 | 5.0 ± 0.4 | 64.3 |
QL30T-air | 896 ± 11 | 947 ± 8 | 14.5 ± 0.3 | - |
QL30T-DCT-air | 864 ± 13 | 941 ± 7 | 14.1 ± 0.2 | - |
QL30T -H | 907 ± 18 | 991 ± 13 | 6.9 ± 0.5 | 52.4 |
QL30T-DCT-H | 883 ± 812 | 941 ± 10 | 6.6 ± 0.4 | 53.2 |
QL60T-air | 904 ± 10 | 957 ± 10 | 14.9 ± 0.4 | - |
QL60T-DCT-air | 872 ± 13 | 921 ± 20 | 14.3 ± 0.2 | - |
QL60T-H | 899 ± 12 | 948 ± 9 | 8.3 ± 0.4 | 44.3 |
QL60T-DCT-H | 903 ± 11 | 942 ± 13 | 5.9 ± 0.3 | 58.8 |
Table 3 Mechanical properties of uncharged and H-charged specimens with and without deep cryogenic pretreatment
Steel | Yield stress (MPa) | Tensile stress (MPa) | Elongation (%) | HE index (%) |
---|---|---|---|---|
QT-air | 953 ± 17 | 988 ± 14 | 11.7 ± 0.2 | - |
QT-DCT-air | 950 ± 11 | 974 ± 10 | 11.1 ± 0.3 | - |
QT-H | 950 ± 14 | 978 ± 10 | 5.0 ± 0.2 | 57.3 |
QT-DCT-H | 956 ± 15 | 971 ± 18 | 3.1 ± 0.1 | 72.1 |
QL15T-air | 913 ± 10 | 972 ± 11 | 14 ± 0.2 | - |
QL15T-DCT-air | 953 ± 20 | 1004 ± 11 | 13.6 ± 0.2 | - |
QL15T-H | 911 ± 13 | 944 ± 12 | 5.7 ± 0.3 | 58.01 |
QL15T-DCT-H | 965 ± 20 | 980 ± 21 | 5.0 ± 0.4 | 64.3 |
QL30T-air | 896 ± 11 | 947 ± 8 | 14.5 ± 0.3 | - |
QL30T-DCT-air | 864 ± 13 | 941 ± 7 | 14.1 ± 0.2 | - |
QL30T -H | 907 ± 18 | 991 ± 13 | 6.9 ± 0.5 | 52.4 |
QL30T-DCT-H | 883 ± 812 | 941 ± 10 | 6.6 ± 0.4 | 53.2 |
QL60T-air | 904 ± 10 | 957 ± 10 | 14.9 ± 0.4 | - |
QL60T-DCT-air | 872 ± 13 | 921 ± 20 | 14.3 ± 0.2 | - |
QL60T-H | 899 ± 12 | 948 ± 9 | 8.3 ± 0.4 | 44.3 |
QL60T-DCT-H | 903 ± 11 | 942 ± 13 | 5.9 ± 0.3 | 58.8 |
Fig. 7 Overview and high-magnification images of fracture surfaces morphologies for the uncharged specimens: a QT; b QL15T; c QL30T; d QL60T; e QT-DCT; f QL15T-DCT; g QL30T-DCT; h QL60T-DCT
Fig. 8 Overview and high-magnification images of fracture surfaces morphologies for the H-charged specimens: a QT; b QL15T; c QL30T; d QL60T; e QT-DCT; f QL15T-DCT; g QL30T-DCT; h QL60T-DCT
Fig. 9 SEM micrographs of fractured steels under dynamic hydrogen charging of the specimens after SSRT: a1 and a2 QT, b1 and b2 QL15T, c1 and c2 QL30T, d1 and d2 QL60T
Fig. 10 SEM micrographs of fractured steels with deep cryogenic pretreatment under dynamic hydrogen charging: a1-a4 QT, b1-b4 QL15T, c1-c4 QL30T, and d1-d4 QL60T steels
Fig. 11 Band contrast (BC), inverse pole figure (IPF) and (Geometrically necessary dislocation) GDN maps of secondary cracks on the side surface of different specimens under dynamic hydrogen charging conditions: a QT; b QL30T; c QT-DCT; d QL30T-DCT
[1] | R. Pamnani, V. Karthik, T. Jayakumar, M. Vasudevan, T. Sakthivel, Mater. Sci. Eng. A 651, 214 (2016) |
[2] | Q. Hu, Y. Liu, T. Zhang, S. Geng, F. Wang, J. Mater. Sci. Technol. 35, 168 (2019) |
[3] | C. Zhou, Q. Ye, J. Hu, T. Zhao, X. Gao, Z. Wang, Mater. Sci. Eng. A 831, 142356 (2022) |
[4] | Y. Song, X. Li, L. Rong, Y. Li, Mater. Sci. Eng. A 528, 4075 (2011) |
[5] | Y. Toji, G. Miyamoto, D. Raabe, Acta Mater. 86, 137 (2015) |
[6] | B. Sun, D. Wang, X. Lu, D. Wan, D. Ponge, X. Zhang, Acta Metall. Sin. -Engl. Lett. 34, 741 (2021) |
[7] | J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, A. Atrens, Corros. Sci. 99, 98 (2015) |
[8] | R. Shi, Y. Tu, L. Yang, S. Liu, S. Yang, K. Gao, X. Yang, X. Pang, Acta Metall Sin. -Engl. Lett. 36, 1193 (2023) |
[9] | L. Zhang, Z. Li, J. Zheng, Y. Zhao, P. Xu, C. Zhou, X. Li, Int. J. Hydrog. Energy 38, 8208 (2013) |
[10] | X. Zhu, W. Li, T.Y. Hsu, S. Zhou, L. Wang, X. Jin, Scr. Mater. 97, 21 (2015) |
[11] | C. Hai, Y. Zhu, E. Fan, C. Du, X. Cheng, X. Li, Corros. Sci. 218, 111164 (2023) |
[12] | C. Wang, Y. Chang, F. Zhou, W. Cao, H. Dong, Y. Weng, Acta Metall. Sin. -Engl. Lett. 56, 400 (2020) |
[13] | S. Longfei, L. Zhiyong, L. Xiaogang, G. Xingpeng, Z. Yinxiao, W. Wu, J. Mater. Res. Technol. 17, 150 (2022) |
[14] | P. Gong, A. Turk, J. Nutter, F. Yu, B. Wynne, P. Rivera-Diaz-del-Castillo, W.M. Rainforth, Acta Mater. 223, 117488 (2022) |
[15] | D. Figueroa, M.J. Robinson, Corros. Sci. 50, 1066 (2008) |
[16] | D. Figueroa, M.J. Robinson, Corros. Sci. 52, 1593 (2010) |
[17] | J. Yang, F. Huang, Z. Guo, Y. Rong, N. Chen, Mater. Sci. Eng. A 665, 76 (2016) |
[18] | Y. Fan, B. Zhang, H. Yi, G. Hao, Y. Sun, J. Wang, E. Han, W. Ke, Acta Mater. 139, 188 (2017) |
[19] | Y. Park, I. Maroef, D. Olson, Weld. J. 81, 27 (2002) |
[20] | X. Li, J. Zhang, J. Chen, S. Shen, G. Yang, T. Wang, X. Song, Mater. Sci. Eng. A 651, 474 (2016) |
[21] | X. Xiong, B. Chen, M. Huang, J. Wang, L. Wang, Scr. Mater. 68, 321 (2013) |
[22] | M. Wang, C.C. Tasan, M. Koyama, D. Ponge, D. Raabe, Metall. Mater. Trans. A 46, 3797 (2015) |
[23] | X. Zhu, W. Li, H.G. Zhao, L. Wang, X. Jin, Int. J. Hydrog. Energy 39, 13031 (2014) |
[24] | S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51, 1789 (2003) |
[25] | M. Tanaka, S.C. Choi, Trans. iron Steel Inst. Jpn. 12, 16 (1972) |
[26] | M.A.V. Devanathan, Z. Stachurski, J. Electrochem. Soc. 111, 619 (1964) |
[27] | C. Hai, Y. Zhu, C. Du, X. Cheng, X. Li, Int. J. Hydrog. Energy 71, 59 (2024) |
[28] | G. Park, S. Koh, H. Jung, K. Kim, Corros. Sci. 50, 1865 (2008) |
[29] | C.H. Dong, Z. Liu, X. Li, Y. Cheng, Int. J. Hydrog. Energy 34, 9879 (2009) |
[30] | R. Shi, L. Chen, Z. Wang, X. Yang, L. Qiao, X. Pang, J. Alloys Compd. 854, 157218 (2021) |
[31] | H. Xue, Y. Cheng, Corros. Sci. 53, 1201 (2011) |
[32] | Q. Liu, A. Atrens, Z. Shi, K. Verbeken, A. Atrens, Corros. Sci. 87, 239 (2014) |
[33] | X. Xu, W. Wu, N. Li, L. Zhang, Y. Wang, Z. Liu, X. Li, Corros. Sci. 219, 111242 (2023) |
[34] | S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17, 316 (2011) |
[35] | X. Zhu, K. Zhang, W. Li, X. Jin, Mater. Sci. Eng. A 658, 400 (2016) |
[36] | R. Troiano, Alexander Metallogr. Microstruct. Anal. 5, 557 (2016) |
[37] | A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids 112, 403 (2018) |
[38] | P. Novak, R. Yuan, B. Somerday, P. Sofronis, R. Ritchie, J. Mech. Phys. Solids 58, 206 (2010) |
[39] | A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 60, 5182 (2012) |
[40] | S.K. Dwivedi, M. Vishwakarma, Int. J. Hydrog. Energy 44, 28007 (2019) |
[41] | M.L. Martin, M.J. Connolly, F.W. DelRio, A.J. Slifka, Appl. Phys. Rev. 7, 041301 (2020) |
[1] | Chao Hai, Yuetong Zhu, Cuiwei Du, Xiaogang Li. Effect of Retained Austenite on the Corrosion Resistance of High-Strength Low-Carbon Steel in Artificial Seawater [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 657-671. |
[2] | Ye Liu, Shuran Chu, Hui Guo, Mengyao Kong, Chenxi Liu, Jingwen Zhang, Ran Ding, Yongchang Liu. Enhancing the Strength of Medium Mn Steel by Flash Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 139-150. |
[3] | Xian Zhang, Li Gong, Yanpeng Feng, Zhihui Wang, Miao Yang, Lin Cheng, Jing Liu, Kaiming Wu. Effect of Retained Austenite on Corrosion Behavior of Ultrafine Bainitic Steel in Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 717-731. |
[4] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. |
[5] | Fei Peng, Yunbo Xu, Xingli Gu. Control of Austenite Characteristics and Ferrite Formation Mechanism by Multiple-Cyclic Annealing in Quenching and Partitioning Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1143-1156. |
[6] | Yong-Han Li, Zhong-Hua Jiang, Zhen-Dan Yang, Jue-Shun Zhu. Effect of Indirect Transformation of Retained Austenite During Tempering on the Charpy Impact Toughness of a Low-Alloy Cr-Mo-V Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1346-1358. |
[7] | Yang Zhao, Wen-Ting Zhu, Shu Yan, Li-Qing Chen. Effect of Microstructure on Tensile Behavior and Mechanical Stability of Retained Austenite in a Cold-Rolled Al-Containing TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1237-1243. |
[8] | Erfan Abbasi, Quanshun Luo, Dave Owens. Microstructural Characteristics and Mechanical Properties of Low-Alloy, Medium-Carbon Steels After Multiple Tempering [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 74-88. |
[9] | Feng Wang, Dong-Sheng Qian, Xiao-Hui Lu. Effect of Prior Cold Deformation on the Stability of Retained Austenite in GCr15 Bearing Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 107-115. |
[10] | Shao-Heng Sun, Ai-Min Zhao, Ran Ding, Xiao-Gang Li. Effect of Heat Treatment on Microstructure and Mechanical Properties of Quenching and Partitioning Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 216-224. |
[11] | Hui-Yan Li,Chao-Fang Dong,Kui Xiao,Xiao-Gang Li,Ping Zhong. Relationship Between Microstructure and Corrosion Behavior of Cr12Ni3Co12Mo4W Ultra-High-Strength Martensitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(11): 1064-1072. |
[12] | Ri-Ming Wu, Wei Li, Cheng-Lin Wang, Yi Xiao, Li Wang, Xue-Jun Jin. Stability of Retained Austenite Through a Combined Intercritical Annealing and Quenching and Partitioning (IAQP) Treatment [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 386-393. |
[13] | Yang Zhao, Qiangjun Yan, Liqing Chen, Xiaoyun Yuan. Effect of Isothermal Temperature on Microstructure and Mechanical Properties of High Al–Low Si TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 389-394. |
[14] | Qingguo Hao, Ying Wang, Xiaoshuai Jia, Xunwei Zuo, Nailu Chen, Yonghua Rong. Dynamic Compression Behavior and Microstructure of a Novel Low-Carbon Quenching-Partitioning-Tempering Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 444-451. |
[15] | Chao Wang, Hua Ding, Jun Zhang, Hongyan Wu. Effect of Intercritical Annealing Time on the Microstructures and Tensile Properties of a High Strength TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 457-463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||