Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (2): 245-258.DOI: 10.1007/s40195-024-01781-2
Previous Articles Next Articles
Zhiqing Chen1,2, Zhixian Zhao1,2, Yiqiang Hao2, Xiaoling Chen3, Liping Zhou1,2, Jingya Wang1,2(), Tao Ying1,2(
), Bin Chen2(
), Xiaoqin Zeng1,2
Received:
2024-05-27
Revised:
2024-07-28
Accepted:
2024-07-31
Online:
2025-02-10
Published:
2024-10-12
Contact:
Jingya Wang, Zhiqing Chen, Zhixian Zhao, Yiqiang Hao, Xiaoling Chen, Liping Zhou, Jingya Wang, Tao Ying, Bin Chen, Xiaoqin Zeng. Development of Interpenetrating Phase Structure AZ91/Al2O3 Composites with High Stiffness, Superior Strength and Low Thermal Expansion Coefficient[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 245-258.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Experimental procedure schematic of the AZ91/Al2O3 IPC preparing process: a design of scaffold structure, b 3D printing of Al2O3 scaffold, c debinding and sintering of Al2O3 scaffold, d prepared Al2O3 scaffold, e squeeze infiltration of the Al2O3 scaffold with AZ91 Mg melt, f the AZ91/Al2O3 IPC
Fig. 3 Microstructure and element distributions of the Mg/Al2O3 IPC: a SEM image of 1C-IPC, b magnified micrograph of the interfacial region of the red outline in a, c SEM image of 1H-IPC, d magnified micrograph of the interfacial region of the red outline in c; element distributions of e Mg, f Al, g O, h Zn in a
Fig. 4 TEM characterizations of the Al2O3/Mg IPC: a interface morphology, element distributions of b Mg, c O, d Al, e Zn in a, f diffraction pattern at the red circle position in a
Materials | AZ91 | Al2O3 | 1H Scaffold | 1C Scaffold | 1H-IPC | 1C-IPC |
---|---|---|---|---|---|---|
Volume fraction of Al2O3 (%) | 0 | 100 | 62.4 | 62.4 | 62.4 | 62.4 |
Density (g/cm3) | 1.81 | 3.95 | 3.86 | 3.86 | 3.01 | 2.96 |
Elastic modulus (GPa) | 43 ± 2 | ≥ 350 | - | - | 142 ± 8 | 164 ± 6 |
Compressive strength (MPa) | 343 ± 7 | ≥ 2000 | 115 ± 18 | 139 ± 14 | 531 ± 35 | 680 ± 27 |
Table 1 Density, elastic modulus, compressive strength of AZ91, Al2O3 (theoretical value), 1H Al2O3 scaffold, 1C Al2O3 scaffold, 1H-IPC and 1C-IPC
Materials | AZ91 | Al2O3 | 1H Scaffold | 1C Scaffold | 1H-IPC | 1C-IPC |
---|---|---|---|---|---|---|
Volume fraction of Al2O3 (%) | 0 | 100 | 62.4 | 62.4 | 62.4 | 62.4 |
Density (g/cm3) | 1.81 | 3.95 | 3.86 | 3.86 | 3.01 | 2.96 |
Elastic modulus (GPa) | 43 ± 2 | ≥ 350 | - | - | 142 ± 8 | 164 ± 6 |
Compressive strength (MPa) | 343 ± 7 | ≥ 2000 | 115 ± 18 | 139 ± 14 | 531 ± 35 | 680 ± 27 |
Fig. 6 Comparison of mechanical properties of the AZ91/Al2O3 IPC with reported high performance Mg alloys and Mg based composites: a elastic modulus, b compressive strength
Fig. 7 Nephogram of maximum principal stress of Al2O3 scaffold and AZ91/Al2O3 IPC: a 1C scaffold, b 1H scaffold, c 1C-IPC, d 1H-IPC, e Mg matrix component of 1C-IPC in c, f Al2O3 scaffold component of 1C-IPC in c, g Mg matrix component of 1H-IPC in d, h Al2O3 scaffold component of 1H-IPC in d
Fig. 8 CTE results of the AZ91/Al2O3 IPC: a comparison of average CTE of AZ91 alloy, 1C-IPC and 1H-IPC at different temperature ranges, b CTE comparison of the AZ91/Al2O3 IPC with reported low CTE Mg alloy and Mg based composites
[1] | T.M. Pollock, Science 328, 986 (2010) |
[2] |
Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, J. Magnes. Alloy. 9, 705 (2021)
DOI |
[3] | H. Shi, C. Xu, X. Hu, W. Gan, K. Wu, X. Wang, J. Magnes. Alloy. 10, 2009 (2022) |
[4] | D. Zhao, X. Chen, Y. Yuan, F. Pan, Mater. Sci. Eng. A 790, 139744 (2020) |
[5] | D. Wang, S. Liu, R. Wu, S. Zhang, Y. Wang, H. Wu, J. Zhang, L. Hou, J. Alloy. Compd. 881, 160663 (2021) |
[6] | T. Guo, S. Wu, X. Zhou, S. Lü, L. Xia, Mater. Chem. Phys. 253, 123260 (2020) |
[7] | N. Kota, M.S. Charan, T. Laha, S. Roy, Ceram. Int. 48, 1451 (2022) |
[8] | M. Shen, X. Wang, C. Li, M. Zhang, X. Hu, M. Zheng, K. Wu, Mater. Des. 54, 436 (2014) |
[9] | H. Watanabe, J. Tani, H. Kido, K. Mizuuchi, Mater. Sci. Eng. A 494, 291 (2008) |
[10] | M. Zhang, Z. Liu, J. Zhang, G. Tan, D. Jiao, W. Zhu, S. Li, Z. Zhang, R. Yang, R. Ritchie, Sci. Adv. 6, 1126 (2020) |
[11] | M. Zhang, N. Zhao, Q. Yu, Z. Liu, R. Qu, J. Zhang, S. Li, D. Ren, F. Berto, Z. Zhang, R. Ritchie, Nat. Commun. 13, 3247 (2022) |
[12] | X. Zhang, N. Zhao, C. He, Prog. Mater. Sci. 113, 100672 (2020) |
[13] | C. Jiao, Z. Chen, Q. Zhang, J. Wang, D. Xie, K. Zhou, Y. Yang, Z. Tian, L. Shen, J. Zhao, Ceram. Int. 48, 36091 (2022) |
[14] | D. An, W. Liu, Z. Xie, H. Li, X. Luo, H. Wu, M. Huang, J. Liang, Z. Tian, R. He, J. Am. Ceram. Soc. 102, 2263 (2019) |
[15] | H. Chang, R.L. Higginson, J.G.P. Binner, J. Microsc. 233, 132 (2009) |
[16] | C. Jiao, D. Xie, Z. He, H. Liang, L. Shen, Y. Yang, Z. Tian, G. Wu, C. Wang, Mater. Des. 217, 110610 (2022) |
[17] | T. Tu, X.H. Chen, Mater. China 37, 284 (2018) |
[18] | T. Tu, X. Chen, C. Zhao, Y. Yuan, F. Pan, Mater. Sci. Eng. A 771, 138576 (2020) |
[19] | D. Zhao, X. Chen, J. Ye, T. Chen, Y. Dai, C. Liu, Z. Luo, S. Gao, J. Zhang, J. Yao, A. Atrens, A. Tang, F. Pan, J. Alloy. Compd. 810, 151857 (2019) |
[20] | T. Tu, X. Chen, T. Chen, Y. Yuan, F. Pan, Mater. Sci. Eng. A 805, 1405559 (2021) |
[21] | M. Song, G. Wu, W. Yang, W. Jia, Z. Xiu, G. Chen, J. Mater. Sci. Technol. 26, 931 (2010) |
[22] | S. Aravindan, P.V. Rao, K. Ponappa, J. Magnes. Alloy. 3, 52 (2015) |
[23] | M.J. Shen, X.J. Wang, M.F. Zhang, B.H. Zhang, M.Y. Zheng, K. Wu, J. Magnes. Alloy. 3, 155 (2015) |
[24] | D.S. Kumar, K.N.S. Suman, C.T. Sasanka, K. Ravindra, P. Poddar, S.B.V. Siva, J. Magnes. Alloy. 5, 48 (2017) |
[25] | C. Yang, B. Zhang, D. Zhao, X. Wang, Y. Sun, X. Xu, F. Liu, J. Alloy. Compd. 774, 573 (2019) |
[26] | L. Wu, R. Wu, L. Hou, J. Zhang, M. Zhang, J. Alloy. Compd. 750, 530 (2018) |
[27] | J. Ye, X. Chen, J. Li, C. Liu, B. Wu, F. Pan, Vacuum 181, 109629 (2020) |
[28] | Y. Ding, J. Xu, J. Hu, Q. Gao, X. Guo, R. Zhang, L. An, Mater. Sci. Eng. A 771, 138575 (2020) |
[29] | S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, M. Keshavarz, M. Kehtari, S. Ramakrishna, F. Berto, J. Mater. Res. Technol. 20, 976 (2022) |
[30] | L. Ju, L. Qi, X. Wei, H. Li, J. Zhou, Mater. Sci. Eng. A 651, 127 (2016) |
[31] | K. Li, L. Liang, P. Du, Z. Cai, T. Xiang, H. Kanetaka, H. Wu, G. Xie, J. Mater. Sci. Technol. 103, 73 (2022) |
[32] | T. Lai, J. Xu, J. Huang, Q. Wang, J. Zhang, J. Luo, Mater. Charact. 185, 111748 (2022) |
[33] | M.A. Kashfipour, N. Mehra, J. Zhu, Adv. Compos. Hybrid. Mater. 1, 415 (2018) |
[34] | A. Shaga, P. Shen, R.F. Guo, Q.C. Jiang, Ceram. Int. 42, 9653 (2016) |
[35] | S. Roy, J. Gibmeier, V. Kostov, K.A. Weidenmann, A. Nagel, A. Wanner, Acta Mater. 59, 1424 (2011) |
[36] | M. Zhang, Q. Yu, Z. Liu, J. Zhang, D. Jiao, S. Li, H. Peng, Q. Wang, Z. Zhang, R. Ritchie, Compos. Pt. B Eng. 215, 108783 (2021) |
[37] |
R.O. Ritchie, Nat. Mater. 10, 817 (2011)
DOI PMID |
[38] | A.S. Dalaq, D.W. Abueidda, R.K. Abu Al-Rub, I.M. Jasiuk, Inter. J. Sol. Struct. 83, 169 (2016) |
[39] | L. Wang, J. Lau, E.L. Thomas, M.C. Boyce, Adv. Mater. 23, 1524 (2011) |
[40] | R. Wang, H. Ye, J. Cheng, H. Li, P. Zhu, B. Li, R. Fan, J. Chen, Y. Lu, Q. Ge, Addit. Manuf. 61, 103361 (2023) |
[41] | X.Q. Feng, Z. Tian, Y.H. Liu, S.W. Yu, Appl. Compos. Mater. 11, 33 (2004) |
[42] | S. Wu, D. Zhou, Y. Huang, K. Wang, J. Song, Z. Dong, B. Jiang, Scr. Mater. 214, 114680 (2022) |
[43] |
T. Zhang, L. Qi, J. Fu, X. Chao, W. Li, H. Li, Ceram. Int. 45, 12563 (2019)
DOI |
[44] | H. Ma, J. Wang, H. Wang, N. Dong, J. Zhang, P. Jin, Y. Peng, J. Magnes. Alloy. 10, 440 (2022) |
[45] | S. Kúdela, A. Rudajevová, S. Kúdela, Mater. Sci. Eng. A 462, 239 (2007) |
[46] | H.J. Li, Z.J. Li, L.H. Qi, H. Oy, Scr. Mater. 61, 512 (2009) |
[47] | A. Rudajevová, O. Padalka, Compos. Sci. Technol. 65, 989 (2005) |
[48] | V. Oddone, B. Boerner, S. Reich, Sci. Technol. Adv. Mater. 18, 180 (2017) |
[49] | S. Roy, K.G. Schell, E.C. Bucharsky, K.A. Weidenmann, A. Wanner, M.J. Hoffmann, Mater. Sci. Eng. A 743, 339 (2019) |
[1] | Weize Lv, Guowei Zhang, Heqian Song, Dan Zhang, Shiyuan Liu, Hong Xu. Effect of Rotating Magnetic Field on the Microstructure and Shear Property of Al/Steel Bimetallic Composite by Compound Casting [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 276-286. |
[2] | Jing-Peng Xiong, Yi-Qi Zeng, Jin-Long Liu, Wei-Cheng Wang, Lan Luo, Yong Liu. Interface Design Strategy for GNS/AZ91 Composites with Semi-Coherent Structure [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 467-483. |
[3] | Lu Xiao, Ting-Ting Liu, Yue Chu, Bo Song, Jie Zhao, Xian-Hua Chen, Kai-Hong Zheng, Fu-Sheng Pan. Effect of Ti Particles on the Microstructure and Mechanical Properties of AZ91 Magnesium Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 513-524. |
[4] | Yunxuan Zhou, Wenjun Tian, Quan Dong, Hailian Wang, Jun Tan, Xianhua Chen, Kaihong Zheng, Fusheng Pan. A First-principles Study on the Adhesion Strength, Interfacial Stability, and Electronic Properties of Mg/Mg2Y Interface [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 537-550. |
[5] | Bo Li, Yonghua Duan, Mengnie Li, Lishi Ma, Shanju Zheng, Mingjun Peng. First-Principles Calculations on Electronic Structure, Adhesion Strength, and Interfacial Stability of Mg(0001)/AlB2(0001) Nucleation Interface [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1752-1766. |
[6] | Xuan Luo, Chao Yang, Dongdong Li, Lai-Chang Zhang. Laser Powder Bed Fusion of Beta-Type Titanium Alloys for Biomedical Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 17-28. |
[7] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao. Unique Duplex Microstructure and Porosity Effect on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys Processed by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1465-1481. |
[8] | Kudakwashe Nyamuchiwa, Yuan Tian, Kanwal Chadha, Lu Jiang, Thomas Dorin, Clodualdo Aranas Jr. Precipitation Behaviour at the Interface of an Additively Manufactured M789-N709 Hybrid Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1353-1370. |
[9] | Yong Zhao, Bi-Jun Xie, Jin-Long Zhang, Qin-Qiang Wang, Bin Xu, Jiang Guo, Zhu-Ji Jin, Ren-Ke Kang, Dian-Zhong Li. Effects of Surface Roughness on Interface Bonding Performance for 316H Stainless Steel in Hot-Compression Bonding [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 771-788. |
[10] | Peng-Da Huo, Feng Li, Wen-Tao Niu, Rong-He Gao, An-Xin Zhang. Microstructure Characteristics and Corrugation Interface Behavior of Al/Mg/Al Composite Plate Rolled Under Large Strain [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 827-838. |
[11] | Shude Ji, Xiao Cui, Lin Ma, Hua Liu, Yingying Zuo, Zhiqing Zhang. Achieving High-Quality Aluminum to Copper Dissimilar Metals Joint via Friction Stir Double-Riveting Welding [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 552-572. |
[12] | Xiangchen Meng, Yuming Xie, Xiaotian Ma, Mingyang Liang, Xiaoyang Peng, Shiwei Han, Lei Kan, Xin Wang, Sihao Chen, Yongxian Huang. Towards Friction Stir Remanufacturing of High-Strength Aluminum Components [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 91-102. |
[13] | Haoxiang Wang, Xin Lin, Nan Kang, Zehao Qin, Shuoqing Shi, Jiacong Li, Weidong Huang. Interfacial Characteristics and Mechanical Behavior of Hybrid Manufactured AlSi10Mg-Al6061 Bimetal via Selective Laser Melting and Forging [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 375-388. |
[14] | Shuimiao Jiang, Lichen Bai, Qi An, Zhe Yan, Weiming Li, Kaisheng Ming, Shijian Zheng. Dependence of Plastic Stability on 3D Interface Layer in Nanolaminated Materials [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1759-1764. |
[15] | Wei-Feng Liu, Bi-Jun Xie, Ming-Yue Sun, Bin Xu, Yan-Fei Cao, Dian-Zhong Li. Interfacial Oxides Evolution of High-Speed Steel Joints by Hot-Compression Bonding [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1837-1848. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||