Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (3): 375-388.DOI: 10.1007/s40195-021-01349-4
Previous Articles Next Articles
Haoxiang Wang1,2, Xin Lin1,2(), Nan Kang1,2(
), Zehao Qin1,2, Shuoqing Shi1,2, Jiacong Li1,2, Weidong Huang1,2
Received:
2021-07-12
Revised:
2021-09-04
Accepted:
2021-09-28
Online:
2022-02-01
Published:
2022-02-01
Contact:
Xin Lin,Nan Kang
About author:
Nan Kang, nan.kang@nwpu.edu.cnHaoxiang Wang, Xin Lin, Nan Kang, Zehao Qin, Shuoqing Shi, Jiacong Li, Weidong Huang. Interfacial Characteristics and Mechanical Behavior of Hybrid Manufactured AlSi10Mg-Al6061 Bimetal via Selective Laser Melting and Forging[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 375-388.
Add to citation manager EndNote|Ris|BibTeX
Materials | Si | Mg | Mn | Fe | Zn | Cu | Al |
---|---|---|---|---|---|---|---|
AlSi10Mg powder | 9.67 | 0.41 | < 0.01 | 0.08 | < 0.01 | 0.01 | Bal. |
Substrate Al6061 | 0.66 | 0.90 | 0.41 | 0.45 | 0.15 | 0.23 | Bal. |
Table 1 Chemical composition (wt.%) of the materials used in the current study
Materials | Si | Mg | Mn | Fe | Zn | Cu | Al |
---|---|---|---|---|---|---|---|
AlSi10Mg powder | 9.67 | 0.41 | < 0.01 | 0.08 | < 0.01 | 0.01 | Bal. |
Substrate Al6061 | 0.66 | 0.90 | 0.41 | 0.45 | 0.15 | 0.23 | Bal. |
Process parameters | Value |
---|---|
Laser power (W) | 340 |
Scanning speed (mm/s) | 1600 |
The thickness of the first layer (μm) | 0/30 |
The thickness of the subsequent layers (μm) | 30 |
Hatch space (mm) | 0.1 |
Scanning strategy | Strip type/interlayer angle 67 degree |
Preheating temperature (°C) | 150 |
Table 2 SLM Process parameters
Process parameters | Value |
---|---|
Laser power (W) | 340 |
Scanning speed (mm/s) | 1600 |
The thickness of the first layer (μm) | 0/30 |
The thickness of the subsequent layers (μm) | 30 |
Hatch space (mm) | 0.1 |
Scanning strategy | Strip type/interlayer angle 67 degree |
Preheating temperature (°C) | 150 |
Procedure | 1 | 2 | 3 |
---|---|---|---|
Voltage (kV) | 4 | 6 | 4 |
Milling angle (°) | 10.5 | 4.5 | 4.5 |
Milling time (min) | 20 | 120 | 30 |
Rotation speed (rpm) | 1.5 | 1.5 | 1.5 |
Milling area (Φ, mm) | 10 | 10 | 10 |
Table 3 Ar-ion milling parameters
Procedure | 1 | 2 | 3 |
---|---|---|---|
Voltage (kV) | 4 | 6 | 4 |
Milling angle (°) | 10.5 | 4.5 | 4.5 |
Milling time (min) | 20 | 120 | 30 |
Rotation speed (rpm) | 1.5 | 1.5 | 1.5 |
Milling area (Φ, mm) | 10 | 10 | 10 |
Fig. 2 Schematic diagram of a tensile specimens and b nanoindentation test positionwhere $A_{0}$ is the initial cross-sectional area of the tensile specimens of the hybrid parts, $\varepsilon_{i}$ is the local true strain obtained by the DIC approach, $A_{i}$ is the cross-sectional area of the tensile specimens corresponding to $\varepsilon_{i}$, and $F_{i}$ is the tensile force applied in tensile tests.
Fig. 6 a OM micrograph of the interfacial bonding zone of the hybrid part, b SEM microstructure of the interfacial bonding zone of the hybrid part, c enlarged image of area c (dilution zone) in Fig. 6b, d SEM microstructure of the melt pool of SLM-AlSi10Mg far away from the interface, e and f enlarged images of area e (the center of the melt pool), f (the boundary of the melt pool) in Fig. 6d
Fig. 7 EBSD IPF map of the interface of the hybrid part and EBSD pole figures of a columnar grains of SLM AlSi10Mg, b equiaxed grains of SLM AlSi10Mg, c first deposited layer, d substrate alloyFull size image
Fig. 9 Room-temperature tensile properties of the hybrid parts: a engineering stress-engineering strain curves and fracture positions (the red line in the inset indicating the position of the interface), b histogram of tensile properties
Sample No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
YS (MPa) | 313 ± 3 | 272 ± 5 | 279 ± 4 | 272 ± 5 | 275 ± 3 | 272 ± 6 | 243 ± 6 |
UTS (MPa) | 345 ± 3 | 334 ± 12 | 338 ± 1 | 337 ± 4 | 353 ± 5 | 362 ± 12 | 467 ± 12 |
Elongation (%) | 9.5 ± 1.5 | 5.6 ± 1.9 | 4.1 ± 0.1 | 4.0 ± 0.9 | 4.4 ± 0.1 | 3.5 ± 0.8 | 8.6 ± 0.9 |
YS (UTS) | 0.91 | 0.81 | 0.83 | 0.81 | 0.78 | 0.75 | 0.52 |
Table 4 Tensile properties of the hybrid parts (samples 1-5), the substrate Al6061 alloy (sample 0) and the SLM-AlSi10Mg (sample 6)
Sample No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
YS (MPa) | 313 ± 3 | 272 ± 5 | 279 ± 4 | 272 ± 5 | 275 ± 3 | 272 ± 6 | 243 ± 6 |
UTS (MPa) | 345 ± 3 | 334 ± 12 | 338 ± 1 | 337 ± 4 | 353 ± 5 | 362 ± 12 | 467 ± 12 |
Elongation (%) | 9.5 ± 1.5 | 5.6 ± 1.9 | 4.1 ± 0.1 | 4.0 ± 0.9 | 4.4 ± 0.1 | 3.5 ± 0.8 | 8.6 ± 0.9 |
YS (UTS) | 0.91 | 0.81 | 0.83 | 0.81 | 0.78 | 0.75 | 0.52 |
Fig. 10 SEM images of the fracture morphologies: a-c substrate Al6061 alloy, d-f hybrid part broken in the substrate area, g-i hybrid part broken in the interface area, j-l SLM-AlSi10Mg
Fig. 12 a-c True stress-true strain curves of different regions in sample 1, sample 3, and sample 5, respectively, d and e true stress-true strain curves and the corresponding strain hardening rate-true strain curves of the three groups of samples in the interface region and the substrate region, respectively
Sample No. | Region | $K$ | $n$ | $\sigma_{\text{u}}$ |
---|---|---|---|---|
Sample 1 | SLM-part | 897.999 | 0.2472 | 635.678 |
Interface | 500.121 | 0.11315 | 390.837 | |
Substrate | 492.767 | 0.10625 | 383.819 | |
Sample 3 | SLM-part | 987.888 | 0.25108 | 698.253 |
Interface | 478.032 | 0.10169 | 378.885 | |
Substrate | 491.099 | 0.09278 | 393.885 | |
Sample 5 | SLM-part | 1025.965 | 0.29172 | 716.23 |
Interface | 492.059 | 0.09924 | 391.245 | |
Substrate | 497.579 | 0.0828 | 395.634 |
Table 5 Constitutive properties of various regions of the hybrid parts
Sample No. | Region | $K$ | $n$ | $\sigma_{\text{u}}$ |
---|---|---|---|---|
Sample 1 | SLM-part | 897.999 | 0.2472 | 635.678 |
Interface | 500.121 | 0.11315 | 390.837 | |
Substrate | 492.767 | 0.10625 | 383.819 | |
Sample 3 | SLM-part | 987.888 | 0.25108 | 698.253 |
Interface | 478.032 | 0.10169 | 378.885 | |
Substrate | 491.099 | 0.09278 | 393.885 | |
Sample 5 | SLM-part | 1025.965 | 0.29172 | 716.23 |
Interface | 492.059 | 0.09924 | 391.245 | |
Substrate | 497.579 | 0.0828 | 395.634 |
[1] | A. Poznak, D. Freiberg, P. Sanders, Fundamentals of Aluminium Metallurgy||automotive Wrought Aluminium Alloys (Elsevier Ltd, 2018) |
[2] |
J. Hirsch, T. Al-Samman, Acta Mater. 61, 818 (2013)
DOI URL |
[3] |
P. Sadeesh, K.M. Venkatesh, V. Rajkumar, P. Avinash, N. Arivazhagan, R.K. Devendranath, S. Narayanan, Procedia Eng. 75, 145 (2014)
DOI URL |
[4] |
R. Ma, K. Fang, J.G. Yang, X.S. Liu, H.Y. Fang, J. Mater. Process. Technol. 214, 1131 (2014)
DOI URL |
[5] | N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, Prog. Mater. Sci. 106, 100578(2019) |
[6] | W. Huang, X. Lin, Sci. Sin. Inform. 45, 1111 (2015) |
[7] | X. Lin, W. Huang, Mater. China 34, 684 (2015) |
[8] |
L. Thijs, K. Kempen, J.P. Kruth, J. Van Humbeeck, Acta Mater. 61, 1809 (2013)
DOI URL |
[9] | X. Liu, C. Zhao, X. Zhou, Z. Shen, W. Liu, Mater. Des. 168, 107677(2019) |
[10] |
J. Chen, W. Hou, X. Wang, S. Chu, Z. Yang, Chin. J. Aeronaut. 33, 2043 (2020)
DOI URL |
[11] | Z. Wang, X. Lin, N. Kang, Y. Hu, J. Chen, W. Huang, Addit. Manuf. 34, 101260(2020) |
[12] |
H. Zhang, H. Zhu, X. Nie, J. Yin, Z. Hu, X. Zeng, Scr. Mater. 134, 6 (2017)
DOI URL |
[13] |
L.E. Loh, C.K. Chua, W.Y. Yeong, J. Song, M. Mapar, S.L. Sing, Z.H. Liu, D.Q. Zhang, Int. J. Heat Mass Transf. 80, 288 (2015)
DOI URL |
[14] |
M.L.M. Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.P. Kruth, J. Van Humbeeck, J. Mater. Process. Technol. 238, 437 (2016)
DOI URL |
[15] | J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549, 365 (2017) |
[16] | S.Z. Uddin, L.E. Murr, C.A. Terrazas, P. Morton, D.A. Roberson, R.B. Wicker, Addit. Manuf. 22, 405 (2018) |
[17] |
H. Azizi, R. Ghiaasiaan, R. Prager, M.H. Ghoncheh, K.A. Samk, A. Lausic, W. Byleveld, A.B. Phillion, Addit. Manuf. 27, 389 (2019)
DOI |
[18] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92, 112 (2018)
DOI URL |
[19] |
P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino, J. Mater. Sci. Technol. 36, 18 (2020)
DOI |
[20] | Y. Zhu, J. Li, X. Tian, H. Wang, D. Liu, Mater. Sci. Eng. A 607, 427 (2014) |
[21] |
C. Tan, K. Zhou, W. Ma, L. Min, Mater. Des. 155, 77 (2018)
DOI URL |
[22] | S. Shakerin, A. Hadadzadeh, B.S. Amirkhiz, S. Shamsdini, J. Li, M. Mohammadi, Addit. Manuf. 29, 100797(2019) |
[23] | M.H. Ghoncheh, M. Sanjari, E. Cyr, J. Kelly, H. Pirgazi, S. Shakerin, A. Hadadzadeh, B.S. Amirkhiz, L.A.I. Kestens, M. Mohammadi, Int. J. Plast. 133, 102840(2020) |
[24] | K. Sindo, Welding Metallurgy, 2nd edn. (Wiley,New York, 2003) |
[25] |
R. Li, M. Wang, Z. Li, P. Cao, T. Yuan, H. Zhu, Acta Mater. 193, 83 (2020)
DOI URL |
[26] |
C. Leitão, I. Galvão, R.M. Leal, D.M. Rodrigues, Mater. Des. 33, 69 (2012)
DOI URL |
[27] |
M. Rappaz, J.M. Drezet, M. Gremaud, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 30, 449 (1999)
DOI URL |
[28] | Y. Qi, H. Zhang, X. Nie, Z. Hu, H. Zhu, X. Zeng, Addit. Manuf. 35, 101346(2020) |
[29] | S.G. Shabestari, M.H. Ghoncheh, H. Momeni, Thermochim. Acta 589, 174 (2014) |
[30] |
M.H. Ghoncheh, S.G. Shabestari, M.H. Abbasi, J. Therm. Anal. Calorim. 117, 1253 (2014)
DOI URL |
[31] | A. Hadadzadeh, B.S. Amirkhiz, S. Shakerin, J. Kelly, J. Li, M. Mohammadi, Addit. Manuf. 31, 100937(2020) |
[32] | Z. Li, Z. Li, Z. Tan, D.B. Xiong, Q. Guo, Int. J. Plast. 127, 102640(2020) |
[33] | H. Chen, Y. Lu, D. Luo, J. Lai, D. Liu, J. Mater. Process. Technol. 285, 116782(2020) |
[34] | D. Walton, B. Chalmers, Trans. AIME. 215, 447 (1959) |
[35] |
N. Hansen, Scr. Mater. 51, 801 (2004)
DOI URL |
[36] |
Q. Yan, B. Song, Y. Shi, J. Mater. Sci. Technol. 41, 199 (2020)
DOI URL |
[37] |
B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, K. Kondoh, Scr. Mater. 141, 45 (2017)
DOI URL |
[38] |
J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, M.H. Loretto, Acta Mater. 117, 311 (2016)
DOI URL |
[39] |
H. Suthar, A. Bhattacharya, S.K. Paul, CIRP J. Manuf. Sci. Technol. 30, 12 (2020)
DOI URL |
[40] | I. Rosenthal, A. Stern, N. Frage, Mater. Sci. Eng. A 682, 509 (2017) |
[41] |
Y. Peng, C. Wu, J. Gan, J. Dong, Constr. Build. Mater. 171, 485 (2018)
DOI URL |
[1] | Hao Tang, Yaoxiang Geng, Shunuo Bian, Junhua Xu, Zhijie Zhang. An Ultra-High Strength Over 700 MPa in Al-Mn-Mg-Sc-Zr Alloy Fabricated by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 466-474. |
[2] | Xiaodong Wang, Chaoyue Chen, Ruixin Zhao, Longtao Liu, Sansan Shuai, Tao Hu, Jiang Wang, Zhongming Ren. Selective Laser Melting of Carbon-Free Mar-M509 Co-Based Superalloy: Microstructure, Micro-Cracks, and Mechanical Anisotropy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 501-516. |
[3] | Lu Yao, Yeqin He, Ziqiang Wang, Binyi Peng, Guoping Li, Yang Liu. Effect of Heat Treatment on the Wear Properties of Selective Laser Melted Ti-6Al-4V Alloy Under Different Loads [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 517-525. |
[4] | Minbo Wang, Ruidi Li, Tiechui Yuan, Haiou Yang, Pengda Niu, Chao Chen. Microstructure and Mechanical Properties of Selective Laser Melted Al-2.51Mn-2.71Mg-0.55Sc-0.29Cu-0.31Zn Alloy Designed by Supersaturated Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 354-368. |
[5] | Pei Wang, Sijie Yu, Jaskarn Shergill, Anil Chaubey, Jürgen Eckert, Konda Gokuldoss Prashanth, Sergio Scudino. Selective Laser Melting of Al-7Si-0.5 Mg-0.5Cu: Effect of Heat Treatment on Microstructure Evolution, Mechanical Properties and Wear Resistance [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 389-396. |
[6] | Min Wang, Yuanjie Zhang, Bo Song, Qingsong Wei, Yusheng Shi. Wear Performance and Corrosion Behavior of Nano-SiCp-Reinforced AlSi7Mg Composite Prepared by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1213-1222. |
[7] | Jian-Bin Zhan, Yan-Jin Lu, Jin-Xin Lin. On the Martensitic Transformation Temperatures and Mechanical Properties of NiTi Alloy Manufactured by Selective Laser Melting: Effect of Remelting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1223-1233. |
[8] | Jinyang Liu, Jian Chen, Li Zhou, Bingyao Liu, Yang Lu, Shanghua Wu, Xin Deng, Zhongliang Lu, Zhipeng Xie, Wei Liu, Jianye Liu, Zhi Qu. Role of Co Content on Densification and Microstructure of WC-Co Cemented Carbides Prepared by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1245-1254. |
[9] | Xiangpeng Gong, Shifang Luo, Shiyong Li, Cuilan Wu. Dislocation-Induced Precipitation and Its Strengthening of Al-Cu-Li-Mg Alloys with High Mg [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 597-605. |
[10] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
[11] | Zongye Ding, Naifang Zhang, Liao Yu, Wenquan Lu, Jianguo Li, Qiaodan Hu. Recent Progress in Metallurgical Bonding Mechanisms at the Liquid/Solid Interface of Dissimilar Metals Investigated via in situ X-ray Imaging Technologies [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 145-168. |
[12] | Biquan Xiao, Jiangfeng Song, Hua Zhao, Aitao Tang, Qiang Liu, Bin Jiang, Shitao Dou, Fusheng Pan. Optimized Tension for AZ31B Thin Sheets Rolled with On-Line Heating Rolling [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 227-238. |
[13] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[14] | Zhongtao Li, Weidong Zhang, Zhenggang Wu. Nature of CoCrFeMnNi/Fe and CoCrFeMnNi/Al Solid/Solid Interface [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1483-1491. |
[15] | Chunliang Yang, Chuansong Wu, Junjie Zhao. Numerical Prediction of Intermetallic Compounds Thickness in Friction Stir Welding of Dissimilar Aluminum/Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1375-1385. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||