Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (11): 1830-1842.DOI: 10.1007/s40195-024-01751-8
Previous Articles Next Articles
Dongdong Zhang1, Mingyang Chen2, Xiaoru Zhang3, Ke Li1, Liqing Wang2, Zhanyong Zhao2(), Peikang Bai1(
), Daqing Fang3(
)
Received:
2024-04-26
Revised:
2024-05-27
Accepted:
2024-06-04
Online:
2024-11-10
Published:
2024-07-22
Contact:
Zhanyong Zhao, zhaozy@nuc.edu.cn;
Peikang Bai, baipeikang@nuc.edu.cn;
Daqing Fang, fangdaqing@xjtu.edu.cn
Dongdong Zhang, Mingyang Chen, Xiaoru Zhang, Ke Li, Liqing Wang, Zhanyong Zhao, Peikang Bai, Daqing Fang. High Strength and Heat Resistance of Low-RE-Containing Mg Alloy Achieved via Substantial Dynamic Precipitates[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1830-1842.
Add to citation manager EndNote|Ris|BibTeX
Alloys | Temperature (ºC) | UTS (MPa) | TYS (MPa) | EL (%) |
---|---|---|---|---|
Mg-3Sm-1Nd-0.6Zn-0.4Zr | 443 ± 2.1 | 435 ± 2.6 | 5.6 ± 0.55 | 443 ± 2.1 |
300 ± 4.4 | 280 ± 4.3 | 8.0 ± 1.31 | 300 ± 4.4 | |
278 ± 4.8 | 251 ± 5.2 | 13.2 ± 1.52 | 278 ± 4.8 | |
WE54 (Mg-5Y-4RE-0.5Zr) [ | 25 | 331 | 300 | − |
200 | 266 | 246 | − | |
250 | 196 | 126 | − | |
Mg97Y2Cu1, at.% [ | 25 | 337 | 297 | 8.1 |
200 | 344 | 273 | 16.3 | |
Mg-8.4Gd-4.4Li-3.5Y-1.4Zn [ | 25 | 39 | 295 | 2.5 |
200 | 279 | 143 | 19.8 | |
Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr [ | 25 | 473 | 373 | 4.1 |
200 | 405 | 343 | 4.2 | |
250 | 369 | 316 | 6.3 | |
Mg-8Gd-2Y-1Nd-0.3Zn-0.6Zr [ | 25 | 271 | 143 | 18.7 |
200 | 233 | 134 | 20.1 | |
Mg-8.2Gd-3.8Y-1Zn-0.4Zr [ | 25 | 470 | 395 | 8 |
250 | 399 | 328 | 13 | |
Mg-10Gd-3Y-0.5Zr [ | 25 | 339 | 312 | 4.0 |
200 | 362 | 253 | 15.5 | |
250 | 308 | 190 | 33.0 |
Table 1 Comparison of mechanical properties of the studied alloy and other typical Mg-RE extrusion alloys after T5 treatment
Alloys | Temperature (ºC) | UTS (MPa) | TYS (MPa) | EL (%) |
---|---|---|---|---|
Mg-3Sm-1Nd-0.6Zn-0.4Zr | 443 ± 2.1 | 435 ± 2.6 | 5.6 ± 0.55 | 443 ± 2.1 |
300 ± 4.4 | 280 ± 4.3 | 8.0 ± 1.31 | 300 ± 4.4 | |
278 ± 4.8 | 251 ± 5.2 | 13.2 ± 1.52 | 278 ± 4.8 | |
WE54 (Mg-5Y-4RE-0.5Zr) [ | 25 | 331 | 300 | − |
200 | 266 | 246 | − | |
250 | 196 | 126 | − | |
Mg97Y2Cu1, at.% [ | 25 | 337 | 297 | 8.1 |
200 | 344 | 273 | 16.3 | |
Mg-8.4Gd-4.4Li-3.5Y-1.4Zn [ | 25 | 39 | 295 | 2.5 |
200 | 279 | 143 | 19.8 | |
Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr [ | 25 | 473 | 373 | 4.1 |
200 | 405 | 343 | 4.2 | |
250 | 369 | 316 | 6.3 | |
Mg-8Gd-2Y-1Nd-0.3Zn-0.6Zr [ | 25 | 271 | 143 | 18.7 |
200 | 233 | 134 | 20.1 | |
Mg-8.2Gd-3.8Y-1Zn-0.4Zr [ | 25 | 470 | 395 | 8 |
250 | 399 | 328 | 13 | |
Mg-10Gd-3Y-0.5Zr [ | 25 | 339 | 312 | 4.0 |
200 | 362 | 253 | 15.5 | |
250 | 308 | 190 | 33.0 |
Fig. 3 SF maps and corresponding distribution histograms for various slip systems: a, d basal < a > slip, b, e prismatic < a > slip, and c, f pyramidal < c + a > slip
Fig. 6 HAADF image, TEM image and HR-TEM image of dynamic precipitates in recrystallized and hot-worked grains: a-c hot-worked grain, d inverse FFT image of phase boundary, e, f one recrystallized grain
Fig. 7 a Grain boundary misorientation maps, b, c bright-field TEM image of a high density of LAGBs in hot-worked grains, d KAM map, e, f bright-field TEM image under two-beam conditions of dislocation substructures in hot-worked grains
Fig. 8 Microstructures of as-aged sample: a, b bright-field TEM images showing a heat stability of recrystallized grains and residual dislocations, c bright-field TEM image of ageing-induced precipitates in hot-worked grains, d SAED pattern, and e, f HR-TEM images along with FFT patterns of precipitates
[1] | R. Guo, X. Zhao, B.W. Hu, X.D. Tian, Q. Wang, Z.M. Zhang, Acta Metall. Sin. -Engl. Lett. 36, 1680 (2023) |
[2] | D. Zhang, H. Pan, J. Li, D. Xie, D. Zhang, C. Che, J. Meng, G. Qin, Mater. Sci. Eng. 833, 142565 (2022) |
[3] | D. Zhang, S. Wang, C. Che, Z. Zhao, K. Li, Z. Ma, P. Bai, Mater. Res. Lett. 12, 442 (2024) |
[4] | J.F. Nie, Metall. Mater. Trans. 43, 3891 (2012) |
[5] | D. Zhang, H. Pan, Z. Pan, Z. Zeng, D. Xie, W. Tang, H. Xie, R. Li, G. Qin, Mater. Sci. Eng. A 872, 144984 (2023) |
[6] | Z. Yu, C. Xu, J. Meng, S. Kamado, Mater. Sci. Eng. 703, 348 (2017) |
[7] | R.G. Li, Y. Yan, H.C. Pan, H. Zhang, J.R. Li, G.W. Qin, B.S. Liu, Mater. Res. Lett. 10, 682 (2022) |
[8] | D.D. Zhang, X.Y. Sun, H.C. Pan, C.J. Che, X.R. Zhang, D.P. Zhang, C.C. Nie, J. Meng, G.W. Qin, Mater. Sci. Eng. A 841, 143009 (2022) |
[9] | D. Zhang, Q. Yang, K. Guan, B. Li, N. Wang, P. Qin, B. Jiang, C. Sun, X. Qin, Z. Tian, Z. Cao, J. Meng, J. Alloy. Compd. 810, 151967 (2019) |
[10] | D. Zhang, Q. Yang, B. Li, K. Guan, N. Wang, B. Jiang, C. Sun, D. Zhang, X. Li, Z. Cao, J. Meng, J. Alloy. Compd. 805, 811 (2019) |
[11] | X.B. Zhang, G.Y. Yuan, Z.Z. Wang, Mater. Sci. Technol. 29, 111 (2013) |
[12] | S. Wang, H. Pan, C. Jiang, Z. Zeng, Z. Pan, W. Tang, C. Yang, Y. Ren, G. Qin, Acta Metall. Sin. Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01682-4 |
[13] | D. Zhang, H. Pan, Z. Zeng, D. Xie, C. Li, J. Li, W. Tang, C. Yang, G. Qin, Mater. Today Commun. 35, 105543 (2023) |
[14] | H. Yang, W. Xie, J. Song, Z. Dong, Y. Gao, B. Jiang, F. Pan, Int. J. Miner. Metall. Mater. 31, 1406 (2024) |
[15] | J. Xie, Z. Zhang, S. Liu, J. Zhang, J. Wang, Y. He, L. Lu, Y. Jiao, R. Wu, Int. J. Miner. Metall. Mater. 30, 82 (2023) |
[16] | K. Yang, H. Pan, S. Du, M. Li, J. Li, H. Xie, Q. Huang, H. Mo, G. Qin, Int. J. Miner. Metall. Mater. 29, 1396 (2022) |
[17] | D.P. Zhang, J. Zhang, Y. Zhang, D. Zhang, T. Xu, B. Li, Y. Zhao, J. Meng, Mater. Sci. Eng. A 854, 143791 (2022) |
[18] | K. Oh-ishi, C.L. Mendis, T. Homma, S. Kamado, T. Ohkubo, K. Hono, Acta Mater. 57, 5593 (2009) |
[19] | D. Zhang, H. Pan, Z. He, W. Tang, C. Li, C. Yang, D. Xie, G. Qin, Mater. Sci. Eng. A 863, 144551 (2023) |
[20] | D. Zhang, S. Yang, F. Meng, Z. Tian, H. Xu, Z. Cao, J. Meng, Mater. Sci. Eng. A 809, 140929 (2021) |
[21] | L. Hong, R. Wang, X. Zhang, Int. J. Miner. Metall. Mater. 29, 1570 (2022) |
[22] | Z. Wu, R. Ahmad, B. Yin, S. Sandlobes, W.A. Curtin, Science 359, 447 (2018) |
[23] | R. Ahmad, Z. Wu, S. Groh, W.A. Curtin, Scr. Mater. 155, 114 (2018) |
[24] | J.F. Nie, K. Oheishi, X. Gao, K. Hono, Acta Mater. 56, 6061 (2008) |
[25] | D.P. Zhang, J. Zhang, T. Xu, Y. Zhang, C. Che, D. Zhang, J. Meng, Mater. Sci. Eng. A 845, 143238 (2022) |
[26] |
X.L. Ma, S.E. Prameela, P. Yi, M. Fernandez, N.M. Krywopusk, L.J. Kecskes, T. Sano, M.L. Falk, T.P. Weihs, Acta Mater. 172, 185 (2019)
DOI |
[27] | C.H. Cáceres, P. Lukáč, Philos. Maga. 88, 977 (2008) |
[28] | Y. Wang, H. Choo, Acta Mater. 81, 83 (2014) |
[29] | Z.R. Zeng, Y.M. Zhu, R.L. Liu, S.W. Xu, C.H.J. Davies, J.F. Nie, N. Birbilis, Acta Mater. 160, 97 (2018) |
[30] | W. Yuan, S.K. Panigrahi, J.Q. Su, R.S. Mishra, Scr. Mater. 65, 994 (2011) |
[31] | I.A. Anyanwu, S. Kamado, Y. Kojima, Mater. Trans. 42, 1206 (2001) |
[32] | Y. Kawamur, T. Kasahara, S. Izumi, M. Yamasaki, Scr. Mater. 55, 453 (2006) |
[33] | Z. Yu, X. Xu, A. Mansoor, B. Du, K. Shi, K. Liu, S. Li, W. Du, P., J. Mater. Sci. Technol. 88, 21 (2021) |
[34] | Z.J. Yu, Y. Huang, X. Qiu, Q. Yang, W. Sun, Z. Tian, D.P. Zhang, J. Meng, Mater. Sci. Eng. A 578, 346 (2013) |
[35] | X.L. Hou, Z.Y. Cao, L.D. Wang, S.W. Xu, S. Kamado, L.M. Wang, Mater. Sci. Eng. A 528, 7805 (2011) |
[36] | Y.Q. Chi, M.Y. Zheng, C. Xu, Y.Z. Du, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 565, 112 (2013) |
[37] | X.B. Liu, R.S. Chen, E.H. Han, J. Alloy. Compd. 465, 232 (2008) |
[38] | N. Su, Y. Wu, Q. Deng, Z. Chang, Q. Wu, Y. Xue, K. Yang, Q. Chen, L. Peng, Mater. Sci. Eng. A 810, 141019 (2021) |
[1] | Xiaojia Nie, Ze Chen, Yang Qi, Hu Zhang, Haihong Zhu. Spreading Behavior and Hot Cracking Mechanism of Single Tracks in High Strength Al-Cu-Mg-Mn Alloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1454-1464. |
[2] | Xuelin Wang, Wenjuan Su, Zhenjia Xie, Xiucheng Li, Wenhao Zhou, Chengjia Shang, Qichen Wang, Jian Bai, Lianquan Wu. Microstructure Evolution of Heat-Affected Zone in Submerged Arc Welding and Laser Hybrid Welding of 690 MPa High Strength Steel and its Relationship with Ductile-Brittle Transition Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 623-636. |
[3] | Qile Huo, Yaxin Chen, Bo Gao, Yi Liu, Manping Liu, Xuefei Chen, Hao Zhou. High Strength and Ductility of a MgAg/MgGdYAg/MgAg Sandwiched Plate Produced by High-Pressure Torsion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 343-351. |
[4] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
[5] | Ling-Yang Yuan, Pan-Wen Han, Ghulam Asghar, Bao-Liang Liu, Jin-Ping Li, Bin Hu, Peng-Huai Fu, Li-Ming Peng. Development of High Strength and Toughness Non-Heated Al-Mg-Si Alloys for High-Pressure Die-Casting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 845-860. |
[6] | Wenbo Liu, Zhe Liu, Huiqun Liu, Peinan Du, Ruiqian Zhang, Qing Wang. Dynamic Precipitation of Laves Phase and Grain Boundary Features in Warm Deformed FeCrAl Alloy: Effect of Zr [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1734-1746. |
[7] | Le Zhang, Wei Wang, fei Xiao, Shahzad M. Babar, Yiyin Shan, Ke Yang. Ultra-thin Laminated Metal Composites with Ultra-high Strength and Excellent Soft Magnetic Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 385-390. |
[8] | Z. W. Wang, G. M. Xie, D. Wang, H. Zhang, D. R. Ni, P. Xue, B. L. Xiao, Z. Y. Ma. Microstructural Evolution and Mechanical Behavior of Friction-Stir-Welded DP1180 Advanced Ultrahigh Strength Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 58-66. |
[9] | Shuai Guan, Chuan-Yong Cui. A Newly Developed Wrought Ni-Fe-Cr-based Superalloy for Advanced Ultra-Supercritical Power Plant Applications Beyond 700 °C [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(9): 1083-1088. |
[10] | Qiang Guo, Jian-Hua Liu, Mei Yu, Song-Mei Li. Influence of Rust Layers on the Corrosion Behavior of Ultra-High Strength Steel 300M Subjected to Wet-Dry cyclic Environment with Chloride and Low Humidity [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 139-146. |
[11] | Jiecen Zhang, Yu Cao, Guangwei Jiang, Hongshuang Di. Effect of Annealing Temperature on the Precipitation Behavior and Texture Evolution in a Warm-Rolled P-Containing Interstitial-Free High Strength Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 395-400. |
[12] | Changsheng Li, Biao Ma, Tao Li, Tao Zhu. Microstructure and Mechanical Properties of 1,000 MPa Ultra-High Strength Hot-Rolled Plate Steel for Coal Mine Refuge Chamber [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 422-429. |
[13] | Enbao Pan, Hongshuang Di, Guangwei Jiang, Chengren Bao. Effect of Heat Treatment on Microstructures and Mechanical Properties of Hot-Dip Galvanized DP Steels [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 469-475. |
[14] | Ying Sun, Xifeng Li, Xiangyu Yu, Delong Ge, Jun Chen, Jieshi Chen. Fracture Morphologies of Advanced High Strength Steel During Deformation [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 101-106. |
[15] | Wen ZHENG,Min WANG,Liang KONG,Xuanting CHENG,Ming LEI . Parameter optimization of dissimilar resistance spot welding on ultra-high strength hot-stamped steel and mild steel by numerical simulation [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(6): 487-498. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||