Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (12): 1734-1746.DOI: 10.1007/s40195-021-01217-1
Previous Articles Next Articles
Wenbo Liu1, Zhe Liu1, Huiqun Liu1,2(), Peinan Du3(
), Ruiqian Zhang3, Qing Wang4
Received:
2020-11-25
Revised:
2020-11-25
Accepted:
2020-11-25
Online:
2021-12-10
Published:
2021-12-10
Contact:
Huiqun Liu,Peinan Du
About author:
Peinan Du dupeinan@126.comWenbo Liu, Zhe Liu, Huiqun Liu, Peinan Du, Ruiqian Zhang, Qing Wang. Dynamic Precipitation of Laves Phase and Grain Boundary Features in Warm Deformed FeCrAl Alloy: Effect of Zr[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1734-1746.
Add to citation manager EndNote|Ris|BibTeX
Steel | Cr | Al | Mo | Nb | Ta | Zr | Fe |
---|---|---|---|---|---|---|---|
FeCrAl | 13.5 | 4.70 | 2.00 | 0.70 | 0.40 | - | Bal |
FeCrAl-Zr | 13.5 | 4.70 | 2.00 | 0.45 | 0.40 | 0.11 | Bal |
Table 1 Chemical composition of Fe-Cr-Al alloys (wt%)
Steel | Cr | Al | Mo | Nb | Ta | Zr | Fe |
---|---|---|---|---|---|---|---|
FeCrAl | 13.5 | 4.70 | 2.00 | 0.70 | 0.40 | - | Bal |
FeCrAl-Zr | 13.5 | 4.70 | 2.00 | 0.45 | 0.40 | 0.11 | Bal |
Fig. 1 a Solution treatment and warm compression, b schematic diagram of the fresh sample and warm compressed sample, c cross section of deformed specimen for BSE and EBSD observations
Location | Cr | Al | Mo | Nb | Ta | Zr | Fe | Phase |
---|---|---|---|---|---|---|---|---|
1 | 13.5 | 7.54 | 1.58 | 0.71 | 1.81 | - | 74.9 | (Fe,Cr)2(Mo,Nb,Ta) |
2 | 13.3 | 7.41 | 0.78 | 3.49 | 1.19 | - | 73.8 | (Fe,Cr)2(Mo,Nb,Ta) |
3 | 14.3 | 8.57 | 0.03 | 0.05 | 0.08 | - | 76.9 | Matrix-αFe |
4 | 6.34 | 8.42 | 0.17 | 0.19 | 0.55 | 18.8 | 65.5 | (Fe,Cr)2(Mo,Nb,Ta,Zr) |
5 | 12.0 | 6.91 | 0.76 | 0.38 | 0.73 | 9.27 | 69.9 | (Fe,Cr)2(Mo,Nb,Ta,Zr) |
6 | 14.2 | 8.96 | 0.04 | 0.02 | 0.06 | 0.01 | 76.7 | Matrix-αFe |
Table 2 Compositions of different locations in Fig. 3 determined by EPMA-WDS (at.%)
Location | Cr | Al | Mo | Nb | Ta | Zr | Fe | Phase |
---|---|---|---|---|---|---|---|---|
1 | 13.5 | 7.54 | 1.58 | 0.71 | 1.81 | - | 74.9 | (Fe,Cr)2(Mo,Nb,Ta) |
2 | 13.3 | 7.41 | 0.78 | 3.49 | 1.19 | - | 73.8 | (Fe,Cr)2(Mo,Nb,Ta) |
3 | 14.3 | 8.57 | 0.03 | 0.05 | 0.08 | - | 76.9 | Matrix-αFe |
4 | 6.34 | 8.42 | 0.17 | 0.19 | 0.55 | 18.8 | 65.5 | (Fe,Cr)2(Mo,Nb,Ta,Zr) |
5 | 12.0 | 6.91 | 0.76 | 0.38 | 0.73 | 9.27 | 69.9 | (Fe,Cr)2(Mo,Nb,Ta,Zr) |
6 | 14.2 | 8.96 | 0.04 | 0.02 | 0.06 | 0.01 | 76.7 | Matrix-αFe |
Fig. 8 EBSD recrystallization grain distributions of FeCrAl a, b, FeCrAl-Zr c, d deformed at 600 °C/0.01 s-1 a, c, 600 °C/1 s-1 b, d (blue grains represent recrystallized grain, yellow grains represent recovery grain, and red grains represent deformed grain)
Fig. 9 Ordinary grain boundary distributions in FeCrAl a, b, FeCrAl-Zr c, d alloy deformed at 600 °C and 0.01 s-1 (blue and red lines correspond to HAGBs and LAGBs)
Grain | Measured indices | Simplified indices | Close orientation |
---|---|---|---|
T1 | (4 5 8) [- | (1 1 2) [ | Brass |
T2 | (3 1 9) [ | (1 1 2) [ | Brass |
T3 | (1 1 2) [ | (1 1 2) [ | Brass |
T4 | (1 3 5) [ | (1 1 2) [ | Brass |
Table 3 Orientation of the marked twins in Fig. 13
Grain | Measured indices | Simplified indices | Close orientation |
---|---|---|---|
T1 | (4 5 8) [- | (1 1 2) [ | Brass |
T2 | (3 1 9) [ | (1 1 2) [ | Brass |
T3 | (1 1 2) [ | (1 1 2) [ | Brass |
T4 | (1 3 5) [ | (1 1 2) [ | Brass |
[1] | Z. Sun, H. Bei, Y. Yamamoto, Mater. Charact. 132, 126(2017) |
[2] | J. Fu, K. Cui, F. Li, J. Wang, Y. Wu, Mater. Charact. 159, 110027(2020) |
[3] | M.W. Anjum, D. Wen, Q. Wang, R. Zhang, C. Dong, P.K. Liaw, J. Nucl. Mater. 522, 19(2019) |
[4] | L.J. Ott, K.R. Robb, D. Wang, J. Nucl. Mater. 448, 520(2014) |
[5] | Z. Sun, Y. Yamamoto, Mater. Sci. Eng. A 700, 554 (2017) |
[6] | Z. Sun, P.D. Edmondson, Y. Yamamoto, Acta Mater. 144, 716(2018) |
[7] | Z. Sun, Y. Yamamoto, X. Chen, Mater. Sci. Eng. A 734, 93 (2018) |
[8] | X. Liang, H. Wang, Q. Pan, J. Zheng, H. Liu, R. Zhang, Y. Xu, Y. Xu, D. Yi, J. Iron Steel Res. Int. 27, 579(2020) |
[9] | Y. He, Z. Deng, J. Liu, B. Yan, C. Chen, J. Mater. Res. Technol. 9, 6632(2020) |
[10] | R. Li, J. Ren, G. Zhang, J. He, Y. Lu, T. Wang, T. Li, Acta Metall. Sin.-Engl. Lett. 33, 1046(2020) |
[11] | T. Zhang, Y. Han, W. Wang, Y. Gao, Y. Song, X. Ran, Acta Metall. Sin.-Engl. Lett. 33, 1289(2020) |
[12] | X. Liang, Q. Pan, H. Wang, J. Zheng, R. Zhang, H. Liu, J. Iron Steel Res. 31, 1012(2019) |
[13] | Y. Yamamoto, B.A. Pint, K.A. Terrani, K.G. Field, Y. Yang, L.L. Snead, J. Nucl. Mater. 467, 703(2015) |
[14] | M.I. Isik, A. Kostka, G. Eggeler, Acta Mater. 81, 230(2014) |
[15] | J.L. Barrilao, B. Kuhn, E. Wessel, Micron. 108, 11 (2018) |
[16] | J.P. Sanhueza, D. Rojas, O. Prat, J. García, M.F. Meléndrez, S. Suarez, Metall. Mater. Trans. A 49, 2951 (2018) |
[17] | S. Scudino, P. Donnadieu, K.B. Surreddi, K. Nikolowski, M. Stoica, J. Eckert, Intermetallics 17, 532 (2009) |
[18] | A. Wasilkowska, M. Bartsch, F. Stein, M. Palm, K. Sztwiertnia, G. Sauthoff, U. Messerschmidt, Mater. Sci. Eng. A 380, 9 (2004) |
[19] | C.D. Rabadia, Y.J. Liu, S.F. Jawed, L. Wang, Y.H. Li, X.H. Zhang, T.B. Sercombe, H. Sun, L.C. Zhang, Mater. Des. 160, 1059(2018) |
[20] | C.D. Rabadia, Y.J. Liu, L. Wang, H. Sun, L.C. Zhang, Mater. Des. 154, 228(2018) |
[21] | N. Sakaguchi, Y. Ohguchi, T. Shibayama, S. Watanabe, H. Kinoshita, J. Nucl. Mater. 432, 23(2013) |
[22] | R. Liu, Z. Liang, L. Lin, M. Huang, Acta Metall. Sin.-Engl. Lett. 34, 169(2021) |
[23] | X. Shi, Z. Cao, Z. Fan, R. Guo, J. Qiao, Acta Metall. Sin.-Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01165-2 |
[24] | A.D. Banadaki, S. Patala, Comput. Mater. Sci. 112, 147(2016) |
[25] | S. Kobayashi, S. Tsurekawa, T. Watanabe, G. Palumbo, Scr. Mater. 62, 294(2010) |
[26] | S. Spigarelli, M. Cabibbo, E. Evangelista, G. Palumbo, Mater. Sci. Eng. A 352, 93 (2003) |
[27] | X.J. Guan, F. Shi, H.M. Ji, X.W. Li, Scr. Mater. 187, 216(2020) |
[28] | F. Shi, R. Gao, X. Guan, C. Liu, X. Li, Acta Metall. Sin.-Engl. Lett. 33, 789(2020) |
[29] | B. Gao, Q. Lai, Y. Cao, R. Hu, L. Xiao, Z. Pan, N. Liang, Y. Li, G. Sha, M. Liu, H. Zhou, X. Wu, Y. Zhu, Sci. Adv. 6, 8169(2020) |
[30] | B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357, 1029 (2017) |
[31] | X. Zhao, Y. Zhang, H. Huang, W. Hui, C. Wang, H. Dong, J. Iron Steel Res. 30, 642(2018) |
[32] |
T. Liu, S. Xia, D. Du, Q. Bai, L. Zhang, Y. Lu, Mater. Lett. 234, 201(2019)
DOI URL |
[33] |
B. Hu, X. Tu, H. Luo, X. Mao, J. Mater. Sci. Technol 47, 131(2020)
DOI URL |
[34] | Y. Cui, K. Aoyagi, H. Bian, Y. Hayasaka, A. Chiba, J. Mater. Sci. Technol. 73, 116(2021) |
[35] | Y. Yang, D. Xu, S. Cao, S. Wu, Z. Zhu, H. Wang, L. Li, S. Xin, L. Qu, A. Huang, J. Mater. Sci. Technol. 73, 52(2021) |
[36] | L. Carneiro, D. Culbertson, Q. Yu, Y. Jiang, Mater. Sci. Eng. A 801, 140405 (2021) |
[37] | X. Ma, Z. Chen, L. Xiao, S. Luo, W. Lu, Mater. Sci. Eng. A 801, 140404 (2021) |
[38] | L. Ren, C.J. Boehlert, G. Quan, Mater. Sci. Eng. A 801, 140397 (2021) |
[39] | Q. Xiao, L. Wang, Y. Liang, Y. Xue, Mater. Sci. Eng. A 801, 140403 (2021) |
[40] | D. Wan, A. Barnoush, Mater. Sci. Eng. A 744, 335 (2019) |
[41] | W. Cheng, Y. Lin, K. Chen, Scr. Mater. 81, 36(2014) |
[42] | M.A. Meyers, O. Vöringer, V.A. Lubardaa, Acta Mater. 49, 4025(2001) |
[43] | H. Zhao, J. Qi, R. Su, H. Zhang, H. Chen, L. Bai, C. Wang, J. Mater. Res. Technol. 9, 2856(2020) |
[44] | J. Chen, H. Liu, R. Zhang, G. Li, D. Yi, G. Lin, Z. Guo, S. Liu, Results Phys. 9, 1057(2018) |
[45] | Y. Xiao, H. Liu, D. Yi, J. Le, H.W. Zhou, Y. Jiang, Z. Chen, J. Wang, Q. Gao, J. Mater. Eng. Perform. 27, 4941(2018) |
[46] | A.B. Li, L.J. Huang, Q.Y. Meng, L. Geng, X.P. Cui, Mater. Des. 30, 1625(2009) |
[47] | K.S. Kumar, L. Pang, J.A. Horton, C.T. Liu, Intermetallics 11, 677 (2003) |
[48] | C. Booth-Morrison, D.C. Dunand, D.N. Seidman, Acta Mater. 59, 7029(2011) |
[49] |
H. Liu, M. Ma, L. Liu, L. Wei, L. Chen, J. Iron Steel Res. Int. 26, 425(2019)
DOI URL |
[50] | K. Chang, N. Moelans, Acta Mater. 64, 443(2014) |
[51] | H. Liu, L. Wei, M. Ma, J. Zheng, L. Chen, R.D.K. Misra, J. Mater. Res. Technol. 9, 2127(2019) |
[52] | Z.W. Hsiao, D. Chen, J.C. Kuo, D.Y. Lin. J. Microsc. 266, 35(2017) |
[53] | M. Odnobokova, M. Tikhonova, A. Belyakov, R. Kaibyshev, J. Mater. Sci. 52, 4210(2017) |
[54] | Y. Cao, H. Di, R.D.K. Misra, X. Yi, J. Zhang, T.J. Ma, Mater. Sci. Eng. A 593, 111 (2014) |
[55] | D.L. Olmsted, E.A. Holm, S.M. Foiles, Acta Mater. 57, 3704(2009) |
[56] |
M. Ma, H. Ding, Z. Tang, J. Zhao, Z. Jiang, G. Fan, J. Iron Steel Res. Int. 23, 244(2016)
DOI URL |
[57] | X. Zhou, X. Min, S. Emura, K. Tsuchiya, Mater. Sci. Eng. A 684, 456 (2017) |
[58] | F. Lin, M. Marteleur, P.J. Jacques, L. Delannay, Int. J. Plast. 105, 195(2018) |
[1] | Hong-Bin Li, Ming-Song Chen, Ya-Qiang Tian, Lian-Sheng Chen, Li-Qing Chen. Ultra-fine-Grained Ferrite Prepared from Dynamic Reversal Austenite During Warm Deformation [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 290-298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||